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This paper studies the nonlinear development of two-dimensional Tollmien–Schlichting
waves in an incompressible flat-plate boundary layer at asymptotically large values
of the Reynolds number. Attention is restricted to the ‘far-downstream lower-branch’
régime where a multiple-scales analysis is possible. It is supposed that to leading-order
the waves are inviscid and neutral, and governed by the [Davis–Acrivos–]Benjamin–
Ono equation. This has a three-parameter family of periodic solutions, the large-
amplitude (soliton) limit of which bears a qualitative resemblance to the ‘spikes’
observed in certain ‘K-type’ transition experiments. The variation of the parameters
over slow length- and timescales is controlled by a viscous sublayer. For the case of a
purely temporal evolution, it is shown that a solution for this sublayer ceases to exist
when the amplitude reaches a certain finite value. For a purely spatial evolution, it
appears that an initially linear disturbance does not evolve to a fully nonlinear stage
of the envisaged form. The implications of these results for the ‘soliton’ theory of
spike formation are discussed.

1. Introduction
The development of Tollmien–Schlichting (TS) instability waves in a boundary

layer and the consequent transition to turbulence was studied in a classic series
of experiments by Schubauer & Klebanoff (1956), Klebanoff & Tidstrom (1959)
and Klebanoff, Tidstrom & Sargent (1962). In these experiments, a two-dimensional
TS input wave was observed to develop a spanwise-periodic variation in amplitude
(‘peak–valley splitting’), followed by the appearance of ‘spikes’ in the velocity traces at
the ‘peaks’ (regions of enhanced amplitude); this sequence of events is now known as
‘K-type’ transition. Early theoretical work attempted to explain the process of spike
formation as a high-frequency secondary instability of the instantaneous inflectional
velocity profiles which arise through amplification of the primary TS wave (e.g.
Betchov 1960; Tani & Komoda 1962; Greenspan & Benney 1963; Landahl 1972).
This interpretation was challenged by Kachanov & Levchenko (1984), who proposed
that the spikes result from the purely deterministic generation of harmonics of the
primary TS wave. A detailed experimental study by Borodulin & Kachanov (1988,
1990) indicated that high-frequency secondary instability does indeed take place near
the wall, but it is not connected with the spikes which form higher in the boundary
layer. Borodulin & Kachanov (1988) also noted that ‘the spikes . . . propagate steadily
downstream within the boundary layer almost without change of their shape and
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Figure 1. Schematic illustration (not to scale) of the different parameter régimes for an experiment
where a fixed-frequency disturbance is introduced into a flat-plate boundary layer. The abscissa
is proportional to downstream distance, and the ordinate to the frequency of the disturbance.
The dashed lines represent the asymptotic (U∞x∗ν−1 � 1) lower and upper branches of the
linear neutral curve, while the dotted line represents the continuation of the neutral curve to
finite Reynolds numbers provided by solutions to the (heuristic) Orr–Sommerfeld equation. A
fixed-frequency disturbance introduced at point A moves along the solid horizontal line as it
propagates downstream. Point B is asymptotically close to the lower-branch neutral curve, while
point C is located in the main part of the ‘lower-branch’ régime, where the spatial growth rate
is comparable with the wavenumber. Point E is in the ‘upper-branch’ régime, and point D in the
overlap region between the lower- and upper-branch scalings.

amplitude’, and claimed that it ‘is highly probable that the behaviour of the spikes
. . . can be described within the framework of a theory of solitons’, though the type of
soliton was not identified.

A mathematically self-consistent theory for the evolution of TS waves in spatially
varying boundary layers can only be obtained for asymptotically large Reynolds
numbers (e.g. Smith 1979; Zhuk & Ryzhov 1980; Bodonyi & Smith 1981). The
precise evolution of the disturbances depends inter alia on where nonlinear effects
become important. As an example, let us consider the flow of an incompressible
fluid of kinematic viscosity ν at speed U∞ past an aligned flat plate. We suppose
that a disturbance of dimensional frequency Ω is introduced in the vicinity of its
lower-branch neutral point, with

F ≡ ΩνU−2
∞ � 1. (1.1)

If the disturbance is relatively large initially, it may become nonlinear while still in
the ‘lower-branch region’, that is, at distances x∗ from the leading edge such that the
local (chord-length) Reynolds number U∞x∗ν−1 is O(F−4/3). A smaller disturbance
might remain linear until the ‘upper-branch region’, where U∞x∗ν−1 is O(F−5/3), while
an even smaller disturbance might never become nonlinear, and simply decay after
passing its upper-branch neutral point. These regions are indicated schematically in
figure 1.
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Other than close to the lower-branch neutral curve (say at point B in figure 1), the
spatial growth rate of the disturbance in the lower-branch region (say at point C)
is comparable, in an asymptotic sense, with the real wavenumber of the disturbance
(although in numerical terms the growth rate may be relatively small). This makes an
asymptotic description of nonlinear effects difficult if not impossible (e.g. Hall 1995).
Analytical progress is much more feasible in the upper-branch scaling régime (at point
E, say) since here the TS waves are neutral to leading order, and governed by inviscid
dynamics (e.g. Bodonyi & Smith 1981). Amplitude growth, which is a viscous effect,
takes place over a lengthscale/timescale long compared to the wavelength/period
of the wave. This makes possible the use of weakly nonlinear theory to describe the
evolution of small-amplitude TS waves. Study of the upper-branch régime would also
seem to have practical relevance since in the experiments of Klebanoff et al. (1962)
and others, nonlinear effects were observed to become significant near the upper
branch rather than in the vicinity of the lower branch. Indeed, at asymptotically large
Reynolds numbers the upper-branch scaling applies to almost the entire region of
linear instability (Goldstein & Durbin 1986). On the other hand, Healey (1995) has
noted that a näıve application of asymptotic theory does not predict the upper-branch
neutral curve accurately at those (finite) Reynolds numbers that are expected to be
of most interest (see also Bodonyi & Smith 1981; Cowley & Wu 1994).

As an alternative to studying the upper-branch régime, it is possible to consider the
region of parameter space intermediate between the lower- and upper-branch scalings.
This has conventionally been referred to as the ‘high-frequency lower branch’ (HFLB)
régime. In the context of a fixed-frequency disturbance propagating downstream it is
possibly better thought of as the ‘far-downstream’ limit of the lower-branch scaling,
or equivalently the far-upstream limit of the upper-branch scaling (see Cowley & Wu
1994). In the HFLB régime, as in the upper-branch régime, the spatial (temporal)
growth rate is small compared with the wavenumber (frequency), thus making possible
a weakly nonlinear approach (Smith & Burggraf 1985); indeed, as far as three-
dimensional disturbances are concerned there would seem to be little difference, in
general, between the HFLB and the upper branch proper (as shown for certain types
of disturbance by Wu, Stewart & Cowley 1996; Jennings 1997). For two-dimensional
disturbances, however, the onset of weakly nonlinear behaviour is quite different.
In the upper-branch régime, nonlinearity acts initially by altering the critical-layer
velocity jump which is produced by the curvature of the basic velocity profile there
(e.g. Goldstein, Durbin & Leib 1987). In the HFLB régime, on the other hand,
the critical layer is closer to the wall in a region where the basic-flow curvature is
negligible; as a result the first effect of nonlinearity is felt outside the critical layer. We
note in passing that there is, of course, an intermediate régime where the two effects
are of equal importance. (For three-dimensional disturbances, there is an additional
contribution to the critical-layer velocity jump which is curvature-independent, and
this may be expected to dominate the dynamics in most cases except when the
three-dimensionality is very weak.)

The weakly nonlinear development of a two-dimensional TS wave in the HFLB
régime was investigated by Smith & Burggraf (1985), who found that nonlinearity
initially affects only the phase of the wave, and not its amplitude. They proposed that
the next distinct stage of development is fully nonlinear and is governed at leading
order by the well-known [Davis–Acrivos–]Benjamin–Ono equation

∂A

∂t
+ A

∂A

∂x
+

1

π

∂2

∂x2
−
∫ ∞
−∞

A

x− x′ dx′ = 0 (1.2)
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(Davis & Acrivos 1967; Benjamin 1967; Ono 1975) – henceforth referred to as the
DABO equation. Viscosity is assumed to be significant only in a passive sublayer
adjacent to the plate. This viscous sublayer produces a higher-order correction to
the inviscid solution, and forces a slow growth of the wave. Essentially the same
asymptotic structure had earlier been proposed by Zhuk & Ryzhov (1982) (see also
Balagondar 1981); a related HFLB régime for plane Poiseuille flow was studied by
Stephanoff et al. (1983), and subsequently by Smith & Burggraf (1985) and Lam
(1988).

A number of explicit solutions to the DABO equation are known. In particular,
Benjamin (1967) found both a soliton solution, and a two-parameter family of
periodic travelling waves – readily generalized, via a Galilean transformation, to
a three-parameter family. For the HFLB régime, the small-amplitude limit of the
latter corresponds to linear TS waves, while the infinite-amplitude limit gives the
soliton solution. Rothmayer & Smith (1987) note the similarity between this soliton
and the ‘spikes’ observed in K-type transition experiments (see also Ryzhov 1990).
There would thus appear to be some theoretical underpinning for the ‘spike-soliton’
conjecture made independently by Borodulin & Kachanov (1988). Further details
of both the experimental and the theoretical work, and a review of other related
literature, can be found in Kachanov, Ryzhov & Smith (1993), Kachanov (1994) and
Ryzhov & Bogdanova-Ryzhova (1997).

On the other hand, the inviscid DABO description must be supplemented by the
viscous sublayer, which is governed by the classical boundary-layer equations with a
prescribed slip velocity. That a solution of this problem exists is not guaranteed a
priori for DABO solutions of finite amplitude. Indeed, Smith & Burggraf (1985) point
out that ‘the sublayer . . . can develop a singularity in time for increased amplitudes . . .
and provide a ‘burst’ of vorticity penetrating the more outer flow zone’. Rothmayer
& Smith (1987) attempted to establish if and when the sublayer problem has a
solution. Their results appear to indicate that an attached sublayer can be fitted
under the inviscid DABO travelling-wave solution for a certain range of values of
the parameters. However, Kachanov et al. (1993) comment that ‘The choice of a one-
parameter family of solutions restricts the application to an analysis, most likely, of
alternative or bypass ways of laminar-turbulent transition rather than the properties
of flashes-spikes in the periodic oscillations which can give rise to the K-regime’.

An aim of the present paper is to establish, for the full three-parameter family
of periodic DABO travelling-waves, the existence or otherwise of a solution for the
viscous sublayer flow. The slow evolution of the waves is determined by the solution
in this sublayer. Our approach is similar to that of Lam (1988), who solved an
analogous sublayer problem for the case of HFLB TS waves in plane Poiseuille flow.
For the sake of definiteness, we restrict attention to the evolution of disturbances that
start out as infinitesimal TS waves in the HFLB régime; all perturbation quantities
are supposed to vanish far upstream and/or at large negative times. In particular,
nonlinear interactions in the viscous Stokes layer adjacent to the wall generate a
mean-flow distortion (i.e. a steady-streaming flow) which diffuses into the outer flow.
Over the timescale of wave growth, the diffusion distance is relatively small; thus the
mean-flow distortion is confined to a diffusion layer intermediate between the Stokes
layer and the outer inviscid region. In this respect, our analysis differs from that of
Smith & Burggraf (1985) and Rothmayer & Smith (1987) who apparently assume
that a mean-flow distortion is (somehow) produced throughout the inviscid layer.
This mean flow is not made clear. For the analogous channel-flow problem, Lam
(1988) notes that in the Smith–Burggraf (1985) formulation ‘both the mean pressure
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gradient and mass flux must change slowly in time in a specified manner. However,
this is a rather artificial restriction and it is more natural to fix one or the other. This
can be done by introducing another slow timescale† and a further asymptotic layer’
(i.e. the diffusion layer).

This paper is organized as follows. In § 2 we summarize the well-known high-
Reynolds-number theory of lower-branch TS waves in a Blasius boundary layer.
Then in § 3 we set the scene for a multiple-scales analysis of such waves in the far-
downstream/high-frequency limit of the lower-branch régime, where the growth rate
is relatively small. The weakly nonlinear phase of evolution is examined in § 4. The
analysis proceeds along the lines of that in Smith & Burggraf (1985), but modified
by the inclusion of the diffusion layer to accommodate the nonlinearly generated
mean-flow distortion. This diffusion layer takes different forms for a spatio-temporal
analysis and for a pure spatial analysis. The latter problem is discussed in Appendix
A, where it is shown that the next stage of development is somewhat different from
that proposed by Smith & Burggraf (1985) and envisaged in § 3. In the remainder of
the text, we restrict attention to the (spatio-)temporal case. In § 5 we formulate the
problem for the fully nonlinear stage of development, and show how the evolution of
the wave amplitude is related to the solution of a periodic boundary-layer problem
governing the behaviour of a viscous sublayer. Numerical solutions of this boundary-
layer problem are presented in § 6, and the evolution of a purely temporally growing
TS wave is determined. It is shown that the sublayer solution ceases to exist when
the wave amplitude reaches a certain value. In § 7 some conclusions are drawn, and
in particular an implication of the analysis for the ‘soliton’ theory of spike formation
is discussed. Finally, in Appendix B, we consider the weakly nonlinear evolution of
a shorter wavepacket for which linear dispersion is significant, and show how the
amplitude equation obtained by Smith (1986a) alters when the diffusion layer is taken
into account.

2. Formulation: the lower-branch régime
For the sake of definiteness the basic flow is taken to be an incompressible Blasius

boundary layer over an aligned flat plate (although the analysis can also be applied
to boundary layers with pressure gradients). Cartesian coordinates [x∗, y∗] are chosen
with x∗ along the plate and y∗ in the normal direction, and the corresponding velocity
components are denoted by [u∗, v∗]. At distances from the leading edge for which
U∞x∗/ν � 1, where U∞ is the free-stream velocity and ν the kinematic viscosity of
the fluid, the basic flow is given asymptotically by

u∗ ∼ U∞f′B(η), v∗ ∼ 1

2

(
U∞ν
x∗

)1/2

[ηf′B(η)− fB(η)], η = y∗
(
U∞
νx∗

)1/2

, (2.1)

where the Blasius function fB is the solution of

1
2
fBf

′′
B + f′′′B = 0, fB(0) = f′B(0) = 0, f′B(η)→ 1 as η →∞, (2.2)

and has the property

f′B(η) ∼ λ̂1η + λ̂4η
4 as η → 0, with λ̂1 = 0.332 . . . and λ̂4 = −λ̂2

1/48. (2.3)

† In other words, the expansions (5.1) of wavenumber α and wave speed c proceed in powers of
ε, and not in powers of ε2 as implied by Smith & Burggraf (1985).
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We suppose that a disturbance of small amplitude and (dimensional) frequency
Ω is introduced into the flow. The evolution of such a disturbance, in the linear
stability régime, is conventionally analysed using so-called Orr–Sommerfeld theory,
whereby the streamwise variation of the basic flow is neglected in calculating a local
wavenumber and spatial growth rate (the ‘parallel-flow approximation’). While this
approach results in good agreement with experiment (see for example Ross et al.
1970; Klingmann et al. 1993), it can only be justified in a strict asymptotic sense
when the non-dimensional frequency parameter defined by (1.1) is small. As discussed
in § 1, if such a disturbance is introduced upstream of the region of instability (say at
point A in figure 1) it initially decays as it propagates downstream, and only starts to
grow when it crosses the ‘lower-branch’ neutral curve at a distance from the leading
edge for which

U∞x∗/ν = O(F−4/3). (2.4)

It is convenient to define a reference length L∗ and a Reynolds number Re by

U∞L∗/ν = Re = F−4/3. (2.5)

In the vicinity of the lower-branch neutral point, the local wavelength is of order

L∗Re−3/8 (2.6)

(e.g. Reid 1965), which is short compared to the O(L∗) lengthscale over which the
basic flow varies (though long compared to the local boundary-layer thickness,
which is of order L∗Re−1/2). Orr–Sommerfeld theory thus provides a self-consistent
approximation, at least to leading-order. Moreover, as pointed out by Smith (1979)
and Zhuk & Ryzhov (1980), the scaling (2.6) implies that the disturbance structure is
described by the (unsteady) ‘triple-deck’ equations (Stewartson 1969; Stewartson &
Williams 1969; Neiland 1969; Messiter 1970; Schneider 1974; Brown & Daniels 1975;
Ryzhov 1977; Ryzhov & Terent’ev 1977). Over most of the boundary layer (the ‘main
deck’) the perturbation flow is effectively inviscid and quasi-steady, and described to
leading order by the ‘displacement’ solution

u∗ = U∞[f′B(η) + Re−1/8Ã(̃t, x̃, x)f′′B(η) + · · ·], (2.7)

v∗ = −U∞Re−1/4Ãx̃(̃t, x̃, x)f′B(η) + · · · , (2.8)

p∗ = ρU2
∞Re

−1/4p̃(̃t, x̃, x) + · · · , (2.9)

where

t̃ = Ωt∗ ≡ Re1/4U∞t∗/L∗, x = x∗/L∗, x̃ = Re3/8x, η = (Re/x)1/2y∗/L∗.
(2.10)

Viscous and unsteady effects are confined to a thin sublayer (the ‘lower deck’) where

ỹ = Re5/8y∗/L∗ (2.11)

is of order one. After the rescaling

u∗ = U∞Re−1/8ũ(̃t, x̃, x, ỹ) + · · · , v∗ = U∞Re−3/8ṽ(̃t, x̃, x, ỹ) + · · · , (2.12)

the governing equations for the lower deck are

ũx̃ + ṽỹ = 0, ũt̃ + ũũx̃ + ṽũỹ = −p̃x̃ + ũỹỹ . (2.13)

(The Re−1/4 scaling for the amplitude of the pressure disturbance was made so as to
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give a fully nonlinear problem in this layer.) Equations (2.13) are to be solved subject
to the no-slip condition

ũ = ṽ = 0 on ỹ = 0,

and the requirement of matching to the main deck

ũ ∼ λ(ỹ + Ã) as ỹ →∞, λ = λ̂1x
−1/2. (2.14)

Finally, it is apparent from (2.8) that there is a blowing velocity of order U∞Re−1/4

at the edge of the boundary layer, indicating the need for an ‘upper deck’ outside the
boundary layer whose width is comparable with the streamwise lengthscale, that is,

y∗ = L∗Re−3/8Ỹ , with Ỹ of order one. (2.15)

To leading order the perturbation flow in this region is inviscid and irrotational, and
the pressure

p∗ = ρU2
∞Re

−1/4P̃ (̃t, x̃, x, Ỹ ) + · · · (2.16)

satisfies

P̃x̃x̃ + P̃Ỹ Ỹ = 0, P̃Ỹ
∣∣
Ỹ=0

= Ãx̃x̃, P̃ → 0 as Ỹ →∞. (2.17)

The (unknown) wall pressure

p̃(̃t, x̃, x) ≡ P̃ (̃t, x̃, x, 0) (2.18)

is thus related to the (unknown) displacement Ã by

p̃(̃t, x̃, x) =
1

π
−
∫ ∞
−∞

1

x̃− x̃′
∂Ã

∂x̃′
dx̃′, (2.19)

where the bar indicates a Cauchy principal value. It may be noted that to leading
order, the dependence on the ‘slow’ streamwise variable x is purely parametric, and
enters only through the wall shear λ.

The stability of the undisturbed solution

(ũ, ṽ, p̃, Ã) = (λỹ, 0, 0, 0) (2.20)

to a small disturbance may be analysed by substituting

(ũ− λỹ, ṽ, p̃, Ã) = ∆[U(ỹ),V(ỹ),P(ỹ),A(ỹ)]eiα̃x̃−iω̃t̃ + c.c., (2.21)

in (2.13)–(2.19), where ∆ is an infinitesimal parameter and c.c. denotes complex
conjugate. This leads to the dispersion relation (e.g. Smith 1979; Zhuk & Ryzhov
1980)

Ai′(ζ) = eiπ/6

(
α̃

λ5/4

)4/3 ∫ ∞
ζ

Ai(ζ ′) dζ ′, ζ = −eiπ/6

(
α̃

λ5/4

)−2/3(
ω̃

λ3/2

)
, (2.22)

where Ai is the Airy function (Abramowitz & Stegun 1964) and −3π/2 < arg α̃ < π/2.
In fact, (2.22) merely reproduces a familiar result from Orr–Sommerfeld theory (see
Reid 1965 and references therein). For a disturbance of fixed frequency ω̃, (2.22) may
be solved numerically to determine the local value of (complex) wavenumber α̃ as a
function of the local wall shear λ. There are an infinite number of such solutions (cf.
Ryzhov & Zhuk 1980), the least stable being the ‘Tollmien–Schlichting’ (TS) mode
for which it is found that

Im(α̃) ? 0 for ω̃λ−3/2 7 S0 ≡ 2.297 . . . , (2.23)
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where Im denotes imaginary part. The other modes have Im(α̃) > 0 for all λ, implying
spatial decay everywhere. It follows from (2.14) and (2.23) that

x = (S
4/3
0 λ̂2

1)ω̃
−4/3 (2.24)

specifies (to leading order) the lower-branch neutral point for a disturbance of (scaled)
frequency ω̃; upstream of this point, the disturbance decays, while downstream it
grows.

Far downstream of the lower-branch neutral point, that is, at large values of x,
the wall shear is small, i.e. λ � 1, and the TS branch of the dispersion relation has
ζ � 1;† the Airy functions in (2.22) may accordingly be replaced by their asymptotic
expansions for large argument to give

α̃ ∼ ω̃1/2λ1/2 − 1
2
eiπ/4ω̃−1/2λ2 + · · · . (2.25)

The first term is real, and an imaginary part only enters at second order. This
implies the existence of two lengthscales: a ‘fast’ wavelength scale of order ω̃−1/2λ−1/2,
over which the disturbance is quasi-neutral, and a slower O(ω̃1/2λ−2) scale which
characterizes the amplitude growth. As observed by Smith & Burggraf (1985), the
asymptotic form (2.25) is also obtained in the ‘high-frequency’ limit ω̃ � 1 at fixed
λ, that is, by concentrating on a fixed position on the plate (i.e. a fixed Reynolds
number) and allowing the input frequency to be large compared to the frequency
of the local lower-branch neutral mode. For such a ‘high-frequency’ disturbance, the
first term of (2.25) indicates that the wavenumber is large compared to that of the
local neutral mode. This ‘short-wavelength’ interpretation may be slightly misleading,
however, since a fixed-frequency disturbance propagating downstream has wavelength
increasing like λ−1/2, albeit more slowly than the boundary-layer thickness, which
grows like λ−1 (see Cowley & Wu 1994).

We end this section by remarking that the result (2.25) is not valid for arbitrarily
small λ (or arbitrarily large ω̃); rather, when λ = O(F−1/6) (fixed frequency) or
ω̃ = O(Re3/20) (fixed Reynolds number), the second term of (2.25) is modified by the
negative curvature of the Blasius profile and this ultimately causes the disturbance
to stabilize at the ‘upper-branch’ neutral position. For a fixed-frequency disturbance,
this corresponds to distances from the leading edge such that

U∞x∗/ν = O(F−5/3) (2.26)

(e.g. Reid 1965). In what follows, however, we shall restrict attention to the interme-
diate régime where the dispersion relation (2.25) is applicable.

3. Far-downstream lower-branch: multiple-scales formulation for a
nonlinear travelling wave

The relative smallness of the linear growth rate in the far-downstream (λ � 1)
or high-frequency (ω̃ � 1) triple deck makes possible the use of standard weakly
nonlinear theory to describe the onset of nonlinearity. In particular, Smith & Burggraf
(1985) show that nonlinear effects first become significant when the amplitude of the
pressure p̃ rises to order λ−3/2. They find, however, that at this stage nonlinearity affects
only the phase of the wave, while the amplitude continues to grow exponentially, at
the same rate as in linear theory. Smith & Burggraf (1985) propose that the next
distinct phase of evolution will be fully nonlinear, with pressure of order λ−3ω̃, and

† The other (decaying) modes have ζ of order one in this limit.
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evolving on the same length- and/or timescales as before. In § 4 below, we repeat
their weakly nonlinear analysis, but with the inclusion of the diffusion layer. Our
amplitude equation differs from that given by Smith & Burggraf (1985) but, at least
in the case of temporal evolution, their aforementioned conclusions still hold good.
We therefore proceed directly to formulate the problem for the fully nonlinear stage
of development; results for the earlier weakly nonlinear régime are readily recovered
(§ 4). It should be emphasized at the outset, however, that at this stage the presentation
is purely formal, and that solutions which match to initially small-amplitude waves
will be presented only for the case of purely temporal evolution. Indeed, for the
purely spatial case the analysis in Appendix A appears to indicate that a nonlinear
régime of the form below does not follow on from the weakly nonlinear phase. Only
preliminary results have been found as yet for the fully nonlinear evolution of a
disturbance modulated in both space and time, and these are not reported here.

We thus suppose, in the first instance, that the fully nonlinear problem may be
characterized by the two length- and/or timescales identified in the linear régime.
‘Slow’ variables X and T are accordingly defined by

x̃ = λ−2ω̃1/2X, t̃ = λ−3/2T , (3.1a, b)

while the ‘fast’ length- and timescales are of order λ−1/2ω̃−1/2 and ω̃−1 respectively,
that is, faster by a factor

ε2 ≡ λ3/2ω̃−1. (3.2)

Further we assume that the disturbance takes the form of a slowly modulated
travelling wave, with ‘fast’ dependence occurring only through the phase variable

ε−2θ(X,T ) ≡ σ. (3.3)

The derivatives thus transform as

∂

∂x̃
→ λ1/2ω̃1/2

[
α
∂

∂σ
+ ε2 ∂

∂X

]
,

∂

∂t̃
→ ω̃

[
−αc ∂

∂σ
+ ε2 ∂

∂T

]
, (3.4)

where the local wavenumber α(X,T ) and wave speed c(X,T ) are defined by

α = θX, αc = −θT , (3.5)

and satisfy the compatibility condition

αT + (αc)X = 0. (3.6)

In addition to (3.4), we make the substitutions

ỹ = ω̃1/2λ−3/2ŷ, ũ = ω̃1/2λ−1/2û, ṽ = ω̃3/2λ−3/2v̂, (3.7)

p̃ = ω̃λ−1p and Ã = ω̃1/2λ−3/2A, (3.8)

in (2.13)–(2.14) to obtain the rescaled lower-deck problem

αûσ + ε2ûX + v̂ŷ = 0, (3.9)

α(û− c)ûσ + ε2(ûT + ûûX) + v̂ûŷ = −αpσ − ε2pX + ε4ûŷŷ , (3.10)

û = 0, v̂ = 0 on ŷ = 0, û ∼ ŷ + A as ŷ →∞. (3.11)

According to Zhuk & Ryzhov (1982) and Smith & Burggraf (1985), the ‘far-
down- stream’ lower deck described by (3.9)–(3.11) with ε � 1 subdivides into two
asymptotic layers. The outermost region, which will be referred to as the Tollmien
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Figure 2. Schematic diagram (not to scale) of the evolution of a fixed-frequency disturbance in the
lower-branch régime, and the emergence of a six-layer structure in the far-downstream limit. The left
of the picture corresponds to the lower branch proper (e.g. point C in figure 1); here the disturbance
is characterized by a single horizontal lengthscale l = O(δRe1/8) where δ is the local boundary-layer
thickness, and a three-layer (triple-deck) structure with upper deck (U) of width O(l), main deck
(M) of width O(δ) and lower deck (L) of width O(δRe−1/8). In the far-downstream limit (λ � 1),
corresponding to points such as D in figure 1, the oscillation wavelength increases downstream like
lλ−1/2, while the amplitude evolves on a slower scale lλ−2; the upper deck accordingly subdivides
into two regions U1 and U2 whose widths are comparable with the wavelength and evolution
lengthscale respectively. The lower deck subdivides into a viscous Stokes layer (S), an inviscid
Tollmien layer (T), and an intermediate diffusion layer (D), as described in the text.

layer, has ŷ of order one and is quasi-inviscid. The leading-order solution in this
region does not satisfy the no-slip condition at the wall, and hence the viscous term
must be reinstated in a Stokes layer adjacent to the wall, where ŷ is of order ε2 (from
the unsteady–viscous balance −αcûσ ∼ ε4ûŷŷ). However, the Stokes layer gives rise to
a σ-independent steady streaming at its outer edge, and it is to be expected that this
will diffuse into a region where ε2ûT ∼ ε4ûŷŷ . Thus, as indicated by Lam (1988) for the
analogous channel-flow problem, and by Bowles, Caporn & Timoshin (1998) in the
boundary-layer context,† a diffusion layer with ŷ of order ε should also be included,
and the original lower deck subdivides into the three-layer structure illustrated in
figure 2. (This argument requires modification in the case of a purely spatial analysis,
with ∂/∂T = 0: see Appendix A.)

Finally, we consider the rescaling of the pressure–displacement interaction law
(2.19). For a modulated wave described by the scales (3.4), we split the upper-

† The need for a diffusion layer was also noted in Stewart & Smith 1992 (where it is termed
the ‘buffer zone’), Wu, Stewart & Cowley 1996 (‘wall-buffer layer’) and Jennings 1997 (ditto), as
well as in the related upper-branch/Rayleigh-wave analyses of Mankbadi, Wu & Lee 1993 (‘wall
layer’), Wu 1993 (ditto) and Smith, Brown & Brown 1993 (‘thicker wall layer’). These studies are all
concerned with three-dimensional disturbances, however, for which this diffusion layer is found to
play a purely passive rôle.
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deck pressure P̃ into its mean (σ-independent) and fluctuating parts, and anticipate
that the latter will tend to zero over a Ỹ -scale of order λ−1/2ω̃−1/2, comparable
with the wavelength, while the former will tend to zero over a slower O(λ−2ω̃1/2) scale
comparable with the modulation lengthscale (cf. Hocking 1975; Balagondar, Maslowe
& Melkonian 1987). Accordingly we write

P̃ = λ−1ω̃[P (f)(σ, T ,X, Y ) + P (m)(T ,X, Ȳ )], (3.12)

where

Y = λ1/2ω̃1/2Ỹ , Ȳ = λ2ω̃−1/2Ỹ = ε2Y , and

∫ 2π

0

P (f) dσ = 0. (3.13)

On substituting (3.12) into (2.17)–(2.18) and separating mean and fluctuating compo-
nents, we obtain

α2P (f)
σσ + P

(f)
Y Y = −2ε2αP

(f)
Xσ − ε2αXP

(f)
σ − ε4P

(f)
XX, P (f) → 0 as Y →∞, (3.14)

P
(f)
Y (σ, T ,X, 0) = α2Aσσ + 2ε2αAXσ + ε2αXAσ + ε4[A− 〈A〉]XX (3.15)

for the fluctuating part, and

P
(m)
XX + P

(m)

Ȳ Ȳ
= 0, P (m) → 0 as Ȳ →∞, (3.16)

P
(m)

Ȳ
(T ,X, 0) = ε2〈A〉XX (3.17)

for the mean part, where 〈 〉 denotes the average over a period in σ:

〈A〉(T ,X) =
1

2π

∫ 2π

0

A(σ, T ,X) dσ. (3.18)

The rescaled wall pressure, namely

p = P (f)(σ, T ,X, 0) + P (m)(T ,X, 0) (3.19)

is thus given by

p =
1

π

(
α
∂

∂σ
+ ε2 ∂

∂X

)
−
∫ ∞
−∞

A(σ′, T , X)

σ − σ′ dσ′ +
ε2

π

∂

∂X
−
∫ ∞
−∞
〈A〉(T ,X ′)
X −X ′ dX ′ + O(ε4).

(3.20)

With the subdivision of the upper deck implied by (3.13), the far-downstream lower-
branch régime is characterized by a six-layer structure in all, as shown in figure
2 (except for a purely temporal evolution, in which case there is no need for the
outermost region U2 which is associated with the slow spatial evolution scale).

4. Weakly nonlinear (spatio-)temporal evolution
From standard weakly nonlinear theory (see for example Stuart 1960), we expect

that as a result of cubic interactions, nonlinearity first comes into play when the
(scaled) disturbance quantities appearing in (3.9)–(3.11) have amplitude of order ε.
According to Smith & Burggraf (1985), the evolution of the disturbance at this
stage is governed by the Landau equation, with a purely imaginary coefficient for the
nonlinear term. We now indicate how their analysis should be modified to incorporate
the diffusion layer, and obtain a different amplitude equation governing the weakly
nonlinear stage of development, namely (4.47)–(4.48) below.
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In this section, we shall follow the presentation and notation of Smith & Burggraf
(1985) as closely as possible, and expand

p = ε[p11(T ,X)eiσ + c.c.] + ε2[p22e
2iσ + c.c.+ p2M] + ε3[p31e

iσ + · · ·] + · · · , (4.1)

A = ε[A11(T ,X)eiσ + c.c.] + ε2[A22e
2iσ + c.c.+ A2M] + ε3[A31e

iσ + · · ·] + · · · , (4.2)

where p11, A11, etc. are complex, and

σ = ε−2(αX − T ), (4.3)

with α a constant. From the pressure–displacement interaction law (3.20) we obtain

p11 = αA11, p22 = 2αA22, p2M = 0, p31 = αA31 − i
∂A11

∂X
. (4.4a, b, c, d)

(In fact, there would seem to be no loss of generality in setting A31, and all higher-order
terms in eiσ in the A-expansion, to zero.)

We now consider each of the three lower-deck sublayers identified in the previous
section.

(a) In the Stokes layer

ŷ = ε2ȳ, (4.5)

and

û = ε[ū11(T ,X, ȳ)eiσ + c.c.] + ε2[ū22e
2iσ + c.c.+ ȳ + ū2M]

+ε3[ū31e
iσ + ū33e

3iσ + c.c.] + · · · , (4.6)

v̂ = ε3[v̄11(T ,X, ȳ)eiσ + c.c.] + ε4[v̄22e
2iσ + c.c.]

+ε5[v̄31e
iσ + v̄33e

3iσ + c.c.] + ε6[v̄4M + · · ·] + · · · . (4.7)

Substitution into the continuity and momentum equations gives, exactly as in Smith
& Burggraf (1985),

iαū11 +
∂v̄11

∂ȳ
= 0, −iū11 = −iαp11 +

∂2ū11

∂ȳ2
, (4.8)

∂ū2M

∂X
+
∂v̄4M

∂ȳ
= 0, v̄∗11

∂ū11

∂ȳ
+ c.c. =

∂2ū2M

∂ȳ2
, (4.9)

and so on, which are to be solved subject to the no-slip condition

ū11 = v̄11 = ū2M = v̄4M = . . . = 0 on ȳ = 0. (4.10)

It follows that

ū11 = αp11[1− emȳ], v̄11 = −iα2p11[ȳ − m−1emȳ + m−1], (4.11)

where m = e3πi/4, and

ū2M = α3|p11|2[3 + (2−√2ȳ)e−ȳ/
√

2 sin (ȳ/
√

2)

−(4 +
√

2ȳ)e−ȳ/
√

2 cos (ȳ/
√

2) + e−
√

2ȳ]; (4.12)

no further terms are required for the present purpose.
(b) The diffusion layer has

ŷ = εy. (4.13)
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The appropriate expansions are

û = ε[u11(T ,X, y)eiσ + c.c.+ y] + ε2[u21e
iσ + u22e

2iσ + c.c.+ u2M]

+ε3[u31e
iσ + u32e

2iσ + u33e
3iσ + c.c.+ u3M] + · · · , (4.14a)

v̂ = ε2[v11(T ,X, y)eiσ + c.c.] + ε3[v21e
iσ + v22e

2iσ + c.c.]

+ε4[v31e
iσ + v32e

2iσ + v33e
3iσ + c.c.] + ε5[v5M + · · ·] + · · · . (4.14b)

The continuity and momentum equations take the form

iαu11 +
∂v11

∂y
= 0, −iu11 = −iαp11, (4.15)

iαu21 +
∂v21

∂y
= 0, −iu21 + iαyu11 + v11 = 0, (4.16)

2iαu22 +
∂v22

∂y
= 0, −2iu22 + iαu2

11 + v11

∂u11

∂y
= −2iαp22, (4.17)

iαu31 +
∂u11

∂X
+
∂v31

∂y
= 0, (4.18)

−iu31 +
∂u11

∂T
+ iαyu21 + v21 + iαu22u

∗
11 + iαu2Mu11 + v∗11

∂u22

∂y
+ v22

∂u∗11

∂y
+ v11

∂u2M

∂y

= −iαp31 − ∂p11

∂X
+
∂2u11

∂y2
, (4.19)

which may be solved subject to matching with the Stokes layer to give

u11 = αp11, v11 = −iα2p11y, u21 = 0, v21 = e3πi/4α2p11, (4.20)

u22 = α(p22 + 1
2
α2p2

11), v22 = −2iα2(p22 + 1
2
α2p2

11)y, (4.21)

u31 = αp31 − i

(
α
∂p11

∂T
+
∂p11

∂X

)
+ α2p11

(
eiπ/4 + u2M − y∂u2M

∂y

)
+ α2p∗11(p22 + 1

2
α2p2

11),

(4.22)

and so on. The leading-order mean-flow distortion is found to satisfy

∂u2M

∂T
− ∂2u2M

∂y2
= −

[
u∗11(iαu31) + u∗21(iαu21) + u∗31(iαu31) + u∗22(2iαu22)

+u∗11

∂u11

∂X
+ v∗11

∂u31

∂y
+ v∗21

∂u21

∂y
+ v∗31

∂u11

∂y
+ v∗22

∂u22

∂y
+ c.c.

]
= −α2 ∂|p2

11|
∂X

, (4.23)

with

u2M |y=0 = 3α3|p11|2 (4.24)

in order to match to the Stokes layer, and u2M bounded as y → ∞. For definiteness,
we take the initial condition for a (spatio-)temporally modulated disturbance to be

u2M → 0 as T → −∞, (4.25)
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in which case

u2M = A2M +

∫ ∞
0

ye−y2/4s

(4πs3)1/2
f(T − s, X)ds, (4.26)

with

A2M = −α2 ∂

∂X

∫ T

−∞
|p11|2(T ′, X)dT ′, f(T ,X) = 3α3|p11|2 − A2M. (4.27)

(c) The Tollmien layer has ŷ of order one. The velocity components expand in the
form

û = ŷ + ε[û11(T ,X, ŷ)eiσ + c.c.] + ε2[û22e
2iσ + c.c.+ û2M]

+ε3[û31e
iσ + û33e

3iσ + c.c.] + · · · , (4.28)

v̂ = ε[v̂11(T ,X, ŷ)eiσ + c.c.] + ε2[v̂22e
2iσ + c.c.]

+ε3[v̂31e
iσ + v̂33e

3iσ + c.c.] + ε4[v̂4M + · · ·] + · · · . (4.29)

Substitution into the continuity and momentum equations gives

iαû11 +
∂v̂11

∂ŷ
= 0, i(αŷ − 1)û11 + v̂11 = −iαp11, (4.30)

2iαû22 +
∂v̂22

∂ŷ
= 0, 2i(αŷ − 1)û22 + v̂22 + iαû2

11 + v̂11

∂û11

∂ŷ
= −2iαp22, (4.31)

∂û11

∂X
+ iαû31 +

∂v̂31

∂ŷ
= 0, (4.32)

∂û11

∂T
+ ŷ

∂û11

∂X
+ i(αŷ − 1)û31 + v̂31 + iαû∗11û22 + v̂∗11

∂û22

∂ŷ
+ v̂22

∂û∗11

∂ŷ

+iαû11û2M + v̂11

∂û2M

∂ŷ
= −iαp31 − ∂p11

∂X
, (4.33)

from which we have

∂û11

∂ŷ
= 0,

∂û22

∂ŷ
= 0,

∂û31

∂ŷ
=

iv̂11

(αŷ − 1)

∂2û2M

∂ŷ2
for ŷ 6= α−1. (4.34)

The mean-flow distortions û2M , v̂4M are found to satisfy

∂û2M

∂X
+
∂v̂4M

∂ŷ
= 0, (4.35)

∂û2M

∂T
+ ŷ

∂û2M

∂X
+ v̂4M = −

[
û∗11(iαû31) + û∗31(iαû31) + û∗22(2iαû22)

+û∗11

∂û11

∂X
+ v̂∗11

∂û31

∂ŷ
+ v̂∗31

∂û11

∂ŷ
+ v̂∗22

∂û22

∂ŷ
+ c.c.+

∂p2M

∂X

]
,

(4.36)

from which (
∂

∂T
+ ŷ

∂

∂X

)
∂û2M

∂ŷ
= 0 for ŷ 6= α−1. (4.37)



Nonlinear growth of two-dimensional Tollmien–Schlichting waves 273

On the assumption that all perturbation quantities go to zero as T → −∞ and/or
X → −∞, it follows that

∂û2M

∂ŷ
= 0 for ŷ 6= α−1. (4.38)

We thus have that in ŷ > α−1

û11 = A11, û22 = A22, û2M = A2M, û31 = A31, (4.39)

v̂11 = −iαp11 − i(αŷ − 1)A11, v̂22 = −2iαp22 − 2i(αŷ − 1)A22 − iαA2
11, (4.40)

v̂31 = −iαp31 − ∂p11

∂X
− i(αŷ − 1)A31 − ∂A11

∂T
+ ŷ

∂A11

∂X
− iαA11A2M − iαA∗11A22,

(4.41)

v̂4M = −∂|A11|2
∂X

− ∂A2M

∂T
− ŷ ∂A2M

∂X
, (4.42)

and so on. The same solutions apply in y < α−1 but with A11 replaced by A11 − J11

etc., where the ‘velocity jumps’ J11 etc. are determined by the solution in the viscous
critical layer where ŷ − α−1 = O(ε4/3). An analysis of this layer (which we do not
present) shows that the required velocity jumps are in fact zero, and thus the solutions
(4.39)–(4.42) apply in ŷ < α−1 also.

We may now match the Tollmien-layer solutions to those in the diffusion layer,
which requires in particular that

v̂11 → 0, v̂22 → 0, v̂31 → e3πi/4α2p11 as ŷ → 0. (4.43a, b, c)

From the first of these, we have that

A11 = αp11, (4.44)

which combines with the pressure–displacement relation (4.4a) to give

α = 1. (4.45)

Equation (4.43b) in conjunction with (4.4b) gives

A22 = − 1
2
A2

11, p22 = −A2
11. (4.46)

Finally, by combining (4.43c) with (4.4d), and making use of (4.27) and (4.44)–(4.46),
we obtain the amplitude-evolution equation

∂A11

∂T
+ 2

∂A11

∂X
= e−iπ/4A11 + iA11B, (4.47)

where B is a real quantity specified by

B = 1
2
|A11|2 +

∂

∂X

∫ T

−∞
|A11|2(T ′, X)dT ′. (4.48)

Two comments are in order. First, it is apparent that the foregoing analysis is not
valid for a pure spatial evolution, with ∂/∂T = 0, since then the integral in (4.48) does
not exist. The modifications required to handle this case are outlined in Appendix
A. Second, the amplitude equation (4.47)–(4.48) differs from that found by Smith
& Burggraf (1985) who do not include the diffusion layer, but instead assume that
the mean-flow correction û2M is equal to the Stokes-layer steady-streaming value,
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3|A11|2, throughout the Tollmien layer. In consequence, their amplitude equation (for
temporal and/or spatial modulation) takes the form (4.47) but with B = − 5

2
|A11|2.

Bowles et al. (1998) do take account of the diffusion layer, and obtain (for a purely
temporal evolution) the amplitude equation (4.47)–(4.48). It may be noted, however,
that provided B is real, its precise form does not affect the (temporal or spatio-
temporal) evolution of the amplitude |A11|, which satisfies

∂|A11|2
∂T

+ 2
∂|A11|2
∂X

=
√

2|A11|2, (4.49)

and thus grows exactly as in linear theory. On substituting for ∂|A11|2/∂X in the last
term of (4.48), we may rewrite the amplitude equation in the form

∂A11

∂T
+ 2

∂A11

∂X
= e−iπ/4A11 +

iA11√
2

∫ T

−∞
|A11|2(T ′, X)dT ′, (4.50)

from which we obtain(
∂

∂T
+ 2

∂

∂X

)
argA11 =

1√
2

[
−1 +

∫ T

−∞
|A11|2(T ′, X)dT ′

]
. (4.51)

The general solutions of (4.49) and (4.51) are

|A11|2 = e
√

2Th(ξ), argA11 = φ(ξ)− T√
2

+
e
√

2T

2
√

2

∫ ∞
0

e−ξ
′/
√

2h(ξ + ξ′) dξ′,

(4.52)

where h and φ are arbitrary functions of the ‘group-velocity’ coordinate

ξ = X − 2T . (4.53)

It follows that in a frame of reference moving with the group velocity (ξ fixed), the

amplitude is ultimately growing like eT/
√

2, and the phase like e
√

2T , without change of
spatial scale. We might expect, therefore, that the next stage of development occurs
when A11 rises to O(ε−1/2), that is when the disturbance amplitude reaches O(ε1/2),
and quintic nonlinearity comes into play. This régime is described by the variables

T =
1√
2

ln ε−1 + T̃ , σ̃ = ε−2(X − T ) +
ε−1

2
√

2

∫ ∞
0

e−ξ
′/
√

2h(ξ + ξ′) dξ′ − 1
2

ln ε−1

(4.54)

and expansions

A = ε1/2[Ã11(T̃ , ξ)eiσ̃ + c.c.] + · · · , etc. (4.55)

Once again, however, the analysis leads to an amplitude equation of the form

∂Ã11

∂T̃
= e−iπ/4Ã11 + iÃ11B̃, (4.56)

with B̃ a real quantity. It follows that the amplitude |Ã11| is still unaffected by
nonlinearity, namely

|Ã11|2 = e
√

2T̃ h(ξ). (4.57)

The same behaviour is found at amplitudes of order ε1/3, ε1/4, etc. when higher-order
nonlinearities enter the reckoning: at each stage nonlinearity affects only the phase,
and the evolution length- and timescales are unchanged. We conclude, as did Smith



Nonlinear growth of two-dimensional Tollmien–Schlichting waves 275

& Burggraf (1985) for their amplitude equation, that the next significant stage of
development is fully nonlinear, and described by the length- and timescales identified
in § 3 above.

5. Fully nonlinear stage: derivation of the evolution equations
The fully nonlinear phase of evolution is described by (3.9)–(3.11) and (3.20) with

all variables expanded in powers of ε, thus

(p, A, α, c) = (p0, A0, α0, c0) + ε(p1, A1, α1, c1) + ε2(p2, A2, α2, c2) + · · · , (5.1)

where the pi and Ai are functions of σ, T and X, and the αi and ci are functions of
T and X. From the pressure–displacement interaction relation (3.20), we have that

p0 =
1

π

∂

∂σ
−
∫ ∞
−∞

α0A0(σ
′, T , X)

σ − σ′ dσ′, p1 =
1

π

∂

∂σ
−
∫ ∞
−∞

α0A1 + α1A0

σ − σ′ dσ′, (5.2a, b)

p2 =
1

π

∂

∂σ
−
∫ ∞
−∞

α0A2 + α1A1 + α2A0

σ − σ′ dσ′ +
1

π

∂

∂X

[
−
∫ ∞
−∞

A0 dσ′

σ − σ′ + −
∫ ∞
−∞
〈A0〉 dX ′
X −X ′

]
.

(5.2c)

Each of the three lower-deck sublayers will now be considered in turn.

5.1. Tollmien layer

The Tollmien layer has ŷ of order one. Substitution of the expansions

(û, v̂) = (û0, v̂0) + ε(û1, v̂1) + ε2(û2, v̂2) + · · ·
into the continuity and momentum equations (3.9)–(3.10) gives for the first three
orders

α0û0σ + v̂0ŷ = 0, [ 1
2
α0(û0 − c0)

2]σ + v̂0û0ŷ = −α0p0σ; (5.3)

α0û1σ + α1û0σ + v̂1ŷ = 0, (5.4)

[α0(û0 − c0)(û1 − c1) + 1
2
α1(û0 − c0)

2]σ + v̂0û1ŷ + v̂1û0ŷ = −α0p1σ − α1p0σ; (5.5)

α0û2σ + α1û1σ + α2û0σ + û0X + v̂2ŷ = 0, (5.6)

[α0(û0 − c0)(û2 − c2) + 1
2
α0(û1 − c1)

2 + α1(û0 − c0)(û1 − c1) + 1
2
α2(û0 − c0)

2]σ

+û0T + û0û0X + v̂0û2ŷ + v̂1û1ŷ + v̂2û0ŷ = −α0p2σ − α1p1σ − α2p0σ − p0X. (5.7)

The outer boundary condition requires

û0 ∼ ŷ + A0, û1 → A1, û2 → A2 as ŷ →∞, (5.8)

and we expect that

v̂0 → 0 as ŷ → 0 (5.9)

in order to match to the diffusion layer.
The problem (5.3)–(5.9) has the simple solution (Smith & Burggraf 1985; Lam

1988)

û0 = ŷ + A0, v̂0 = −ŷα0A0σ, p0 = R0 − 1
2
(A0 − c0)

2 + 1
2
c2

0; (5.10)

û1 = A1, v̂1 = v̂1b − ŷ(α0A1σ + α1A0σ), (5.11)
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p1 = R1 − (A0 − c0)(A1 − c1) + c0c1 − 1

α0

∫ σ

0

v̂1b(σ
′, X, T ) dσ′; (5.12)

û2 = A2, v̂2 = v̂2b − ŷ(α0A2σ + α1A1σ + α2A0σ + A0X), (5.13)

p2 = R2 − (A0 − c0)(A2 − c2)− 1
2
(A1 − c1)

2 + c0c2 + 1
2
c2

1

− 1

α0

∫ σ

0

[
A0T + (c0A0)X + R0X + v̂2b − α1

α0

v̂1b

]
dσ′. (5.14)

Here the Ri(X,T ) are at present arbitrary functions of integration, as are v̂1b(σ,X, T ),
v̂2b(σ,X, T ). While we do not claim that this solution is unique, at least for a temporal
evolution it can be matched at earlier times to the weakly nonlinear solution of the
previous section; indeed it provides the unique continuation of that solution as long
as viscous effects remain negligible and closed streamlines do not develop in a frame
moving with the wave (see below).

The leading-order pressure p0 can be eliminated between (5.10) and (5.2a) to give

B0B0σ +
α0

π

∂2

∂σ2
−
∫ ∞
−∞

B0

σ − σ′ dσ′ = 0, B0 = A0 − c0, (5.15)

which may be recognized as the travelling-wave reduction of the DABO equation
(1.2). For our problem, we seek solutions which are 2π-periodic and which may
without loss of generality be taken to be even in σ. It was shown by Benjamin (1967)
that (for any α0 and c0) there is a one-parameter family of such solutions, namely

B0 = α0

[
1

(1− b2
0)

1/2
− 2(1− b2

0)
1/2

1− b0 cos σ

]
, (5.16)

where the arbitrary parameter b0 is a measure of wave amplitude and must be allowed
to depend on the slow scales X and T (as do α0 and c0, we recall). The solution (5.16)
is illustrated in figure 3 for various representative amplitudes. For b0 small

B0 ∼ −α0[1 + 2b0 cos σ], (5.17)

while as b0 → 1−, with σ of order (1− b0)
1/2,

B0 ∼ α0√
2(1− b0)1/2

[
1− 8(1− b0)

σ2 + 2(1− b0)

]
, (5.18)

which is the soliton solution of the DABO equation. It may also be noted that B0 is
negative for all σ if |b0| < 0.5, but takes both positive and negative values if |b0| > 0.5.
In the latter case, this implies the presence of a region of closed streamlines in a frame
of reference moving with the wave speed, and the validity of the solution (5.10)–(5.14)
is not immediately clear.

Proceeding to the next two orders, we may eliminate p1 and p2 between the
inviscid-layer solutions (5.12), (5.14) and the interaction equations (5.2) to obtain

[B0(Ai − ci)]σ +
α0

π

∂2

∂σ2
−
∫ ∞
−∞

Ai

σ − σ′ dσ′ = Fi for i = 1, 2,

where the right-hand sides are given by

F1 =
1

α0

v̂1b − α1

π

∂2

∂σ2
−
∫ ∞
−∞

A0

σ − σ′ dσ′, (5.19)
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Figure 3. The periodic DABO solution (5.16) for various values of the amplitude b0.

F2 = − 1

α0

[
A0T + (c0A0)X + R0X + v̂2b − α1

α0

v̂1b

]
− 1

π

∂2

∂X∂σ
−
∫ ∞
−∞

A0(σ
′, T , X)

σ − σ′ dσ′

−1

π

∂2

∂σ2
−
∫ ∞
−∞

α1A1 + α2A0

σ − σ′ dσ′ − [ 1
2
(A1 − c1)

2]σ

= − 1

α0

[
A0T + 2(c0A0)X − A0A0X + 2R0X + v̂2b − α1

α0

v̂1b

]

+
α0X

α2
0

[R0 − 1
2
A2

0 + c0A0]− 1

π

∂2

∂σ2
−
∫ ∞
−∞

α1A1 + α2A0

σ − σ′ dσ′ − [ 1
2
(A1 − c1)

2]σ,

(5.20)

the last following from (5.2a) and (5.10). In order that the equations for A1 and
A2 have a solution, secularity conditions must be satisfied by their right-hand sides,
namely that the inner products

〈φFi〉 ≡ 1

2π

∫ 2π

0

φFi dσ

must vanish for any 2π-periodic solution φ of the adjoint equation

B0φσ +
α0

π
−
∫ ∞
−∞

φss

σ − s ds = 0. (5.21)

It is clear that equation (5.21) is satisfied by φ = 1 and φ = A0; no other independent
solution could be found. The inner products of the A1-equation with φ = 1 and
φ = A0 impose the requirements that

〈v̂1b〉 = 0 and 〈A0v̂1b〉 = 0, (5.22a, b)
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respectively. It will be evident from the diffusion-layer solution that these are indeed
satisfied, and moreover that v̂1b is an odd function of σ. It follows that F1 is also odd
in σ, and consequently A1 may be taken to be an even function of σ. (It is possible
to add an arbitrary multiple of ∂B0/∂σ to A1, but this odd term may be eliminated
by an O(ε) shift in the origin of σ.)

The inner product of the A2-equation with φ = 1 leads to

∂

∂T
〈A0〉+

∂

∂X
[c0〈A0〉] +

∂R0

∂X
+ 〈v̂2b〉 = 0, (5.23)

and it will turn out that 〈v̂2b〉 = 0. Further, it follows from (5.2) and (5.10) that

0 = 〈p0〉 = − 1
2
〈A2

0〉+ c0〈A0〉+ R0, (5.24)

and elimination of R0 from (5.23) and (5.24) yields

∂

∂T
〈A0〉+

1

2

∂

∂X
〈A2

0〉 = 0. (5.25)

Finally, the condition that 〈A0F2〉 = 0 gives

1

2

∂D

∂T
+ [c0 + 1

2
M]

(
∂D

∂X
− D

α0

∂α0

∂X

)
+ 2D

∂c0

∂X
− 1

3

∂S

∂X
+

S

2α0

∂α0

∂X
= −〈A0v̂2b〉,

(5.26)

where we write

M = 〈A0〉, D = 〈A2
0〉 − 〈A0〉2, S = 〈A3

0〉 − 〈A0〉3. (5.27)

The right-hand side of (5.26) is determined by the solutions in the diffusion layer and
Stokes layer, and in fact turns out to be a local function of α0, c0 and b0. With the
substitutions

M = c0 − α0 − e0, D = 4α0e0, S = 12α0e0(c0 − α0), (5.28a, b, c)

where

e0 = α0

[
1

(1− b2
0)

1/2
− 1

]
, (5.29)

(3.6), (5.25) and (5.26) provide three simultaneous equations for the evolution of the
leading-order wavenumber α0, wave speed c0 and amplitude b0 (or equivalently e0),
namely

∂

∂T

(
α0

c0

e0

)
+

(
c0 α0 0
α0 c0 0
e0 e0 α0 + c0 + e0

)
∂

∂X

(
α0

c0

e0

)
=

(
0
−F
F

)
(5.30)

where

F = − 1

2α0

〈A0v̂2b〉. (5.31)

The ‘inviscid’ form of this system, without the right-hand side of (5.26) or (5.30),
has been obtained by Dobrokhotov & Krichever (1991), who also identify Riemann
invariants

r1 = c0 + α0, r2 = c0 − α0, r3 = c0 + α0 + e0. (5.32)

These evolve according to

∂r1

∂T
+ r1

∂r1

∂X
=
∂r2

∂T
+ r2

∂r2

∂X
= −F, ∂r3

∂T
+ r3

∂r3

∂X
= 0. (5.33)



Nonlinear growth of two-dimensional Tollmien–Schlichting waves 279

For purely spatial evolution, with ∂/∂T = 0, it is apparent from (5.25) that
matching to an upstream linear solution is not possible, since if A0 → 0 as X → −∞
then A0 ≡ 0. In Appendix A, we examine the small-amplitude stage for the purely
spatial case, and show that it is not expected to evolve to a fully nonlinear régime
of the form assumed here. Rather, the mean flow in the diffusion layer goes fully
nonlinear and develops a Goldstein-type singularity while the wave amplitude is still
small. On the other hand, in the case of a purely temporal evolution, with ∂/∂X = 0,
the kinematic equation (3.6) states merely that α0 is constant (in fact we could take
α0 = 1 without loss of generality). Further, (5.25) together with the requirement that
A0 → 0 as T → −∞ gives

M ≡ 〈A0〉 = 0. (5.34)

It then follows from (5.28a) that

c0 = α0 − e0 ≡ α0

[
2− 1

(1− b2
0)

1/2

]
, (5.35)

and hence

A0 ≡ c0 + B0 = α0

[
2− 2(1− b2

0)
1/2

1− b0 cos σ

]
. (5.36)

Finally, on substituting (5.28) into (5.26) we obtain a single equation for the evolution
of the amplitude b0, namely

2α0

de0

dT
≡ α2

0

(1− b2
0)

3/2

d(b2
0)

dT
= −〈A0v̂2b〉. (5.37)

The blowing velocity v̂2b = v̂2|ŷ=0 will now be found by considering in turn the
diffusion layer and the Stokes layer, thus enabling the right-hand side of (5.26) or
(5.37) to be calculated.

5.2. Diffusion layer

The diffusion-layer problem is obtained by substituting the rescaling

ŷ = εy, (û, v̂) = (u, εv)

in (3.9) and (3.10) to obtain continuity and momentum equations,

αuσ + ε2uX + vy = 0, (5.38)

α(u− c)uσ + ε2(uT + uuX) + vuy = −αpσ − ε2pX + ε2uyy. (5.39)

It is convenient to make a von Mises transformation, that is, to define a modified
streamfunction ψ(σ, T ,X, y) by

u = −ψy + c, v = v̄∞ + αψσ + ε2(ψX − ycX), ψ = 0 on y = 0,

where

v̄∞ ≡ v|y=0 = εv̄0∞ + ε2v̄1∞ + · · · (5.40)

is the blowing velocity of the Stokes layer, and to use (σ, T ,X, ψ) as independent
variables. In this formulation,

y =

∫ ψ

0

1

c− u dψ′, v = v̄∞ + (u− c)
(
α
∂y

∂σ
+ ε2 ∂y

∂X

)
− ε2ycX, (5.41)
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and the momentum equation is transformed to

∂

∂σ
[ 1

2
α(u− c)2] + ε2

[
∂u

∂T
+ u

∂u

∂X

]
+ ε2 ∂

∂ψ
[ 1

2
(u− c)2]

[
∂y

∂T
+

∂

∂X
(cy)

]

−v̄∞ ∂

∂ψ
[ 1

2
(u− c)2] = −

(
α
∂

∂σ
+ ε2 ∂

∂X

)
p+ ε2(u− c) ∂

2

∂ψ2
[ 1

2
(u− c)2]. (5.42)

For this transformation to be valid, it is necessary to have (c−u) everywhere positive;
since

u→ c+ B0 + O(ε) as y →∞ (5.43)

this requires B0 < 0 for all σ, or in other words |b0| < 0.5 (as illustrated in figure
3). The question of whether solutions can be found with |b0| > 0.5 (in which case a
region of closed streamlines is present in a frame of reference moving at the wave
speed c) will not be considered here.†

The expansions

(u, v, y, p, α, c) = (u0, v0, y0, p0, α0, c0) + ε(u1, v1, y1, p1, α1, c1)

+ε2(u2, v2, y2, p2, α2, c2) + · · · , (5.44)

may now be substituted into (5.41)–(5.42), with the pi given by (5.10), (5.12) and
(5.14), and for the first two orders the solutions are found to be

1
2
(u0 − c0)

2 = g0(ψ,X, T ) + R0 + 1
2
c2

0 − p0 ≡ g0(ψ,X, T ) + 1
2
B2

0 , (5.45)

(u0 − c0)(u1 − c1) = −g1(ψ,X, T )− p1 +
g0ψ

α0

∫ σ

0

v̄0∞ dσ′, (5.46)

y0 =

∫ ψ

0

1

c0 − u0

dψ′, y1 = −
∫ ψ

0

c1 − u1

(c0 − u0)2
dψ′, (5.47)

where g0 and g1 are undetermined at this order. Matching to the Tollmien layer
requires

g0 → 0, g1ψ → 1 as ψ →∞ (5.48a, b)

and
u0 = c0 − [2g0(T ,X, ψ) + B2

0]1/2, (5.49)

where the positive square root is taken.
The O(ε2) problem takes the form

α0

∂

∂σ
[(u0 − c0)(u2 − c2) + 1

2
(u1 − c1)

2] + α1

∂

∂σ
[(u0 − c0)(u1 − c1)]

+α2

∂

∂σ
[ 1

2
(u0 − c0)

2] +
∂u0

∂T
+ u0

∂u0

∂X
+

∂

∂ψ
[ 1

2
(u0 − c0)

2]

[
∂y0

∂T
+

∂

∂X
(c0y0)

]
−v̄0∞

∂

∂ψ
[(u0 − c0)(u1 − c1)]− v̄1∞

∂

∂ψ
[ 1

2
(u0 − c0)

2]

= − ∂

∂σ
[α0p2 + α1p1 + α2p0]− ∂p0

∂X
+ (u0 − c0)

∂2

∂ψ2
[ 1

2
(u0 − c0)

2]. (5.50)

† While we impose the restriction that the flow is unidirectional in the frame of reference moving
at the wave speed c, the flow near the wall can be either positive or negative in the wall frame. To
see this first recall that û0 = A0 at the bottom of the Tollmien layer. Then note for, say, the purely
temporal case, that from (5.36) A0 < 0 and A0 > 0 when σ = 0 and σ = π respectively (assuming
b0 > 0; vice versa for b0 < 0).
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Averaging this equation over a period in σ, recalling that 〈p0〉 = 0 and anticipating
also that

〈v̄0∞〉 = 0, 〈v̄1∞〉 = 0 (5.51)

(which follow from (5.70) below), we obtain a (nonlinear) evolution equation for g0,
namely

Iψ
∂g0

∂T
+ (c0Iψ − 1)

∂g0

∂X
− [IT + (c0I)X]

∂g0

∂ψ
− (Iψ)−1 ∂

2g0

∂ψ2
= J, (5.52)

where

I =

∫ ψ

0

〈(2g0 + B2
0)−1/2〉dψ′, (5.53)

and

J = c0T + c0c0X − 〈(2g0 + B2
0)1/2〉c0X −

〈
B0(B0T + c0B0X)

(2g0 + B2
0)1/2

〉
+ 〈B0B0X〉. (5.54)

In order to solve (5.52) it is necessary to impose the value of

g0b ≡ g0(T ,X, 0), (5.55)

which is in fact determined by the Stokes-layer solution (see below), and a suitable
initial condition, which in the purely temporal case may be taken to be simply

g0 → 0 as T → −∞. (5.56)

The diffusion-layer blowing velocity may be evaluated in primitive variables as

v̂1b + εv̂2b + · · · = lim
y→∞

{
v + y

(
α
∂

∂σ
+ ε2 ∂

∂X

)
u

}
, (5.57)

which in the von Mises formulation is equivalent to

v̄∞ + lim
ψ→∞

{
∂

∂σ
[α(u− c)y] + αy

∂y

∂σ

∂

∂ψ
[ 1

2
(u− c)2]

}
+ O(ε2). (5.58)

We thus obtain

v̂1b = lim
ψ→∞

∂

∂σ
[α0B0y0], (5.59)

v̂2b = v̄0∞ + lim
ψ→∞

∂

∂σ
[α0B0y1 + α1B0y0 − α0B

−1
0 (g1 + p1)y0 − 1

2
α0y

2
0], (5.60)

which together with (5.51) justify our earlier assertions that

〈v̂1b〉 = 0, 〈v̂2b〉 = 0. (5.61)

As noted in the previous section, there is no loss of generality in taking A0 and A1

(and hence B0 and p1) to be even in σ, in which case the same is true of y0, while

y1 =
1

α0

[∫ ψ

0

g0ψ′

(u0 − c0)3
dψ′
] [∫ σ

0

v̄0∞ dσ′
]

+ terms even in σ

=
1

α0

[(2g0 + B2
0)−1/2 − (2g0b + B2

0)−1/2]

[∫ σ

0

v̄0∞ dσ′
]

+ · · · . (5.62)

It follows that v̂1b is odd in σ, which justifies (5.22b), while

v̂2b = − ∂

∂σ

[
B0

(2g0b + B2
0)1/2

∫ σ

0

v̄0∞dσ′
]

+ terms odd in σ. (5.63)
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Only the part of v̂2b even in σ contributes to the right-hand side of the amplitude
equation (5.26). After integration by parts, this can be expressed in the form

−〈A0v̂2b〉 =
1

2π

∫ 2π

0

(2g0b + B2
0)1/2v̄0∞dσ ≡ 1

2π

∫ 2π

0

(c0 − ūe)v̄0∞dσ, (5.64)

where

ūe(σ,X, T ) ≡ u0|y=0 = c0 − (2g0b + B2
0)1/2 (5.65)

is the leading-order slip velocity of the Stokes layer.
A solution of equation (5.52) with boundary conditions (5.48a), (5.55) and (5.56)

will be presented only for the case of purely temporal evolution (see figure 7 below),
although preliminary calculations suggest that a solution can be found for a more
general spatio-temporal evolution, at least for sufficiently small values of the amplitude
b0. (The foregoing analysis is only valid in any case for |b0| < 0.5.) We note, however,
that provided a diffusion-layer solution exists, its precise form has no bearing on the
leading-order evolution of the disturbance. This is because the quantities v̄0∞ and g0b

appearing in (5.64) and (5.65) are determined as functions of α0, c0 and b0 purely by
the Stokes-layer solution, as we now show.

5.3. Stokes layer

The Stokes layer is described by the rescaling

ŷ = ε2ȳ, û = ū0 + εū1 + · · · , v̂ = ε2v̄0 + ε3v̄1 + · · · , (5.66)

which gives at leading order

α0ū0σ + v̄0ȳ = 0, α0(ū0 − c0)ū0σ + v̄0ū0ȳ = −α0p0σ + ū0ȳȳ , (5.67)

ū0 = v̄0 = 0 on ȳ = 0, ū0 → ūe(σ,X, T ) as ȳ →∞, (5.68)

with ūe specified by (5.65), and −p0σ = ūeūeσ . At next order, we have inter alia that

α0ū1σ + α1ū0σ + v̄1ȳ = 0, v1 = 0 on ȳ = 0. (5.69)

It follows that

〈v̄0〉 ≡ 0, 〈v̄1〉 ≡ 0, (5.70)

which justifies the earlier assumptions (5.51).
The leading-order problem (5.67)–(5.68) may be simplified by writing

σ = −x, ȳ =
z√
α0c0

, ū0 − c0 = −c0U(x, z), v̄0 =
√
α0c0V (x, z) (5.71)

(the dependence on the slow variables T and X is purely parametric and has been
suppressed). The problem then reduces to

Ux + Vz = 0, UUx + VUz = Ue(x)U ′e(x) +Uzz, (5.72)

U = 1, V = 0 on z = 0, U → Ue(x) as z →∞, (5.73)

where

Ue(x) ≡ [−2w + c−2
0 B2

0(x)]1/2, w = −g0b/c
2
0, (5.74)

and

c−1
0 B0(x) = γ0

[
1

(1− b2
0)

1/2
− 2(1− b2

0)
1/2

1− b0 cos x

]
, γ0 =

α0

c0

. (5.75)
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We note that c−1
0 B0(x) is 2π-periodic in x and depends on only two parameters, namely

b0 and γ0. The constant w is an eigenvalue uniquely determined by the requirement
that (5.72)–(5.75) has a solution which is 2π-periodic in x, as we shall show in the
next section. Thus the Stokes-layer solution provides both the boundary condition
(5.55) required to solve for g0 in the diffusion layer, and the forcing (5.64) on the
right-hand side of the amplitude-evolution equation (5.26).

6. Numerical solution
The problem (5.72)–(5.74) has the form of the classical boundary-layer equations

with a moving lower boundary and a periodic slip velocity. Similar problems involving
periodic boundary layers have been studied in a number of contexts, such as flow
past a rotating and translating cylinder (Glauert 1957; Moore 1957; Nikolayev 1982;
Lam 1988) or an oscillating cylinder (Schlichting 1932; Stuart 1963; Riley 1978),
driven cavity flows with closed streamlines (Wood 1956; Kuwahara & Imai 1969;
Riley 1981; Chipman & Duck 1993), flows over wavy surfaces (Bordner 1978) and
rotating-annulus flows (Page 1982). Our numerical method is an adaptation of a code
written by Lam (1988) which she used to study both the flow past a rotating and
translating cylinder, and periodic boundary layers associated with two-dimensional
TS waves in plane Poiseuille flow.

6.1. The periodic boundary-layer problem

The Stokes-layer problem (5.72)–(5.73) was rewritten in von Mises variables as

UUx = UeU
′
e +U(UUψ)ψ, U = 1 on ψ = 0, (6.1a, b)

U → Ue(x) as ψ →∞. (6.2)

The problem was then solved in a finite computational domain, with the far-field
boundary condition (6.2) replaced by

U = Ue(x) on ψ = ψ∞. (6.3)

As noted by Riley (1981), for given values of the parameters b0 and γ0, periodic
solutions can be found for a range of values of the parameter w when this finite
boundary condition is used. However, only one of these satisfies the true far-field
boundary condition in the limit as ψ∞ → ∞. In order to identify this solution we
follow Riley (1981) and examine the behaviour towards the edge of the boundary
layer (ψ � 1), where

U(x, ψ) = Ue(x) + Ũ(x, ψ) with |Ũ| � 1.

On substituting into the governing equation (6.1) and retaining only terms linear in
Ũ, we find that the resulting equation for Ũ has a separable solution that is periodic
in x (cf. Riley 1981), namely

UeŨ = D0 + E0ψ +

∞∑
n=1

[
Dn exp

(
in

〈Ue〉
∫ x

0

Ue dx′ − eiπ/4

(
n

〈Ue〉
)1/2

ψ

)
+ c.c.

]
.

(6.4)

Replacing the outer boundary condition (6.2b) by (6.3) leads for most values of w to a
solution with non-zero values of D0 and E0 (although D0 +E0ψ∞ ≈ 0 for ψ∞ � 1). In
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order to obtain the unique value of w which gives the correct exponentially decaying
behaviour for Ũ at the edge of the boundary layer it is necessary to apply an
additional condition which forces E0, and hence D0, to zero as ψ∞ → ∞, for example

〈UeŨψ〉 ≡ 1

2π

∫ 2π

0

UeŨψdx = 0 at ψ = ψ∞. (6.5)

The method we adopted to solve for w(b0, γ0) was as follows. First, for given values
of b0 and γ0 a guess was made for w. For these values of b0, γ0 and w, a second-order-
accurate Crank–Nicolson scheme was used to integrate (6.1) subject to (6.2) through
repeated periods of 2π until the solution settled down to a state that was periodic to
within a specified tolerance. We expect the rate of convergence to be exponentially
fast, as may be seen by noting that once the solution is close to a periodic state, the
linearized equation for the perturbation has coefficients which are 2π-periodic in x.
On the basis of Floquet theory (cf. von Kzercek & Davis 1974), this suggests that the
velocity perturbation has the form

e−ΛxŨ(x, ψ) + c.c., (6.6)

where Ũ is a 2π-periodic function of x and Λ is a complex constant; the relevant
solutions have Re (Λ) > 0. Once a periodic solution had been obtained, the value of E0

in (6.4) was estimated by evaluating 〈UeŨψ〉 at ψ = ψ∞. An improved approximation
for the eigenvalue w could then be found by secant iteration with the aim of forcing E0

to zero. The procedure was repeated until |E0| was less than some specified tolerance.
For each new value of the parameters b0 and γ0, a velocity profile was needed at

the starting position x0 (say x0 = 0). It was desirable that this starting profile should
satisfy the boundary condition at ψ = 0 and model the correct oscillatory exponential
decay for large ψ. For small values of b0, a velocity profile loosely based on Glauert’s
(1957) ‘small-amplitude’ solution was used, namely

U = Ue(x0) + [1−Ue(x0)]
cos (θ + 2−1/2ψ)

cos θ exp (2−1/2ψ)
, where θ = 1

2
sin

[
Ue(x0)− 1

2−Ue(x0)

]
.

(6.7)

However, for larger amplitudes the velocity profile at x0 for a new values of b0 and
γ0 was obtained by linear interpolation from the velocity profiles at x0 previously
calculated for two nearby pairs of values of b0 and γ0. An interpolated update for
the velocity profile was necessary in order to avoid introducing thin viscous shear
layers at ψ∞, since if introduced these took many periods to diffuse out of the flow. A
similar interpolation was generally used for obtaining the initial velocity profile when
w was updated for a given value of b0 and γ0 (especially for larger values of b0).

For a given value of γ0, a solution of the sublayer problem can only be found for
b0 less than some critical value b0c(γ0), indicated in figure 4. As b0 approaches such
a critical value from below, the minimum velocity in the boundary layer decreases
until for b0 = b0c a stagnation point seems to develop within the boundary layer,
at x = xc and ψ = ψc say. In order to help resolve the velocity profile for values
of b0 when this stagnation point is close to developing, a coordinate transformation
(x, ψ)→ (χ(x), φ(ψ)) specified implicitly by

x = χ− [1− (b̂0c − b0)
1/2] sin χ,

ψ = φ− β(1− ε̂)
[

tanh

(
φ− φ̂c
β

)
+ tanh

(
φ̂c

β

)]
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Figure 4. The critical value b0c(γ0) above which a solution of the Stokes-layer
problem cannot be found.

was introduced, where b̂0c and φ̂c are approximations to b0c and φc ≡ φ(ψc), and ε̂
and β are constants (typically ε̂ = 0.005, β = 0.656). It was not found necessary to
apply a shift in χ since |xc| � 1. The values of these stretching constants were fixed
by trial and error so as to give an enhanced grid resolution near the position of
minimum velocity (an equi-spaced grid in χ and φ was used).

6.2. Temporal evolution of a DABO travelling wave

Once the solution of the Stokes-layer problem has been obtained, the forcing on the
right-hand side of (5.26) or (5.37) may be calculated as

−〈A0v̂2b〉 = α
1/2
0 c

3/2
0 S[b0, γ0], S[b0, γ0] =

1

2π

∫ 2π

0

UeV∞dx, (6.8)

where V∞ is the blowing velocity defined as

V∞ = lim
z→∞

(
V + z

dUe

dx

)
≡
∫ ∞

0

(
Ue

U

)
x

dψ. (6.9)

As indicated earlier, for simplicity we restrict attention to the case of a purely temporal
evolution. This is characterized by a single parameter, namely the amplitude b0, since
from (5.35)

α0

c0

= γ0(b0) =
(1− b2

0)
1/2

2(1− b2
0)

1/2 − 1
, (6.10)

and from (5.37) and (6.8), we have the evolution equation

1

(1− b2
0)

3/2

d(b2
0)

dT
= [γ0(b0)]

−3/2S[b0, γ0(b0)]. (6.11)

In figure 5(a) the eigenvalue w(b0, γ0(b0)) is plotted as a function of b0. A solution
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Figure 5. (a) The eigenvalue w, (b) the square of the minimum streamwise velocity Umin ≡ minx,ψ U,
(c) the reciprocal of the maximum blowing velocity Vmax ≡ maxx V∞, and (d) the rate of change of
amplitude db0/dT , as functions of the amplitude b0, for a purely temporal evolution.

for w could not be found for b0 > b0s ≈ 0.191. A reason for this may be surmised from
figures 5(b) and 5(c) which are plots against b0 of the square of Umin ≡ minx,ψ U and
the reciprocal of Vmax ≡ maxx V∞, respectively. These figures suggest that as b0 → b0s,
a stagnation point is developing within the boundary layer, and the blowing velocity is
becoming unbounded. Similar behaviour is observed in other periodic boundary-layer
flows over downstream-moving walls when the adverse pressure gradient becomes too
large over a sustained section of the wall (e.g. Lam 1988). The behaviour of the
blowing velocity in particular suggests that a ‘marginal separation’ singularity will be
present in the solution for b0 = b0s.

We have not been able to determine numerically the precise form of the singularity.
Its analytic structure will depend on whether or not the position of the singularity,
xs, is located at the maximum point in the external pressure distribution, i.e. whether
or not xs = 0 (Professor S. N. Brown, private communication 1987; Sychev 1987;
Negoda & Sychev 1987; Timoshin 1996). For the time being we note that more
detailed calculations for other external velocities Ue by S.J.C. and Professor S. I.
Chernyshenko (private communication) suggest that xs 6= 0. If this is the case here,
then the singularity for b = b0s will have the form proposed by Timoshin (1996) for
marginal separation in non-periodic boundary-layer flow over a downstream-moving
wall.

Figure 5(d) is a plot against b0 of the rate of change of amplitude db0/dT calculated
from (5.37) and (5.71). Since db0/dT is positive, b0 will be a monotonically increasing
function of time. We have solved for b0(T ) for the initial condition

b0 ∼ eT/
√

2 as T → −∞, (6.12)
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Figure 6. The temporal evolution of (a) amplitude b0, and (b) c0Umin ≡ (c0 −maxσ,ȳ ū0),
as specified by (6.10)–(6.12).
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Figure 7. The solution of (5.52)–(5.56) for the temporal evolution specified by (6.10)–(6.12).

using a fourth-order Runge–Kutta integrator and interpolants of the graph in figure
5(d). The result is plotted in figure 6(a). This shows that when the singularity develops
in the Stokes layer, at T = Ts ≈ −2.47, both the amplitude b0 and its rate of change
db0/dT are finite. Moreover, we have verified (numerically) that the diffusion-layer
problem (5.52)–(5.56) has a solution for g0(ψ,T ) right up to the singularity time; this
is shown in figure 7. In order to highlight the reason why no solution can be found
for T > Ts (i.e. b0 > b0s), figure 6(b) shows c0 − maxσ,ȳ ū0 as a function of T . We
conclude that for T < Ts the TS wave is propagating downstream faster than the
fluid in the Stokes layer beneath it. However, as T → Ts a stagnation point develops
in the frame moving with the instantaneous velocity of the TS wave. For times larger
than this we anticipate that there would be fluid moving both faster and slower than
the TS wave. However, by this time boundary-layer ‘separation’ will have occurred
(albeit ‘separation’ because the fluid is moving too fast relative to the TS wave), and
a new asymptotic régime will have been entered.

We do not pursue the details of this new régime here, other than to note that when
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the separation is small, i.e. marginal, and if xs 6= 0, then the flow in the Stokes layer
will be as given by Timoshin (1996).

7. Conclusions
This paper has examined the evolution of a certain class of two-dimensional TS

waves in a boundary layer. Following earlier work by Zhuk & Ryzhov (1982) and
Smith & Burggraf (1985), we have concentrated on the ‘far-downstream lower-branch’
régime of a high-Reynolds-number Blasius boundary layer. In this régime linear TS
waves are asymptotically inviscid and neutral to leading order and their slow growth
in amplitude is a relatively slow viscous effect. If this is still the case in the subsequent
nonlinear stage of development, the form of such quasi-periodic TS waves will then be
governed to leading order by the DABO equation. This equation is known to have a
three-parameter family of periodic solutions (characterized by wavenumber α0, wave
speed c0, and amplitude parameter b0), which asymptote in the large-amplitude limit
(b0 → 1−) to a soliton solution. As Rothmayer & Smith (1987) and Kachanov et al.
(1993) have noted, this soliton bears a striking resemblance to the ‘spikes’ observed
in certain ‘K-type’ transition experiments. Moreover, a quantitative comparison has
been made by Kachanov et al. (1993) between the vibrating-ribbon experiments of
Borodulin & Kachanov (1988) and periodic DABO solutions with γ0 ≡ α0/c0 = 1 and
a range of values of b0 (which was used as an adjustable parameter). The agreement
appears reasonably good for b0 up to about 0.65 (discrepancies for larger b0 were
attributed to three-dimensional effects).

At higher order, the slow evolution of the solution parameters is determined by
a system of equations involving the behaviour of a periodic viscous Stokes layer
governed by nonlinear classical boundary-layer equations. A careful formulation of
the problem shows that nonlinear interactions within the Stokes layer generate a
mean-flow distortion (steady streaming) which diffuses outwards from the wall. Over
the slow timescale of growth of the TS waves, this mean flow diffuses through a
distance that is large compared to the Stokes-layer thickness, but small compared to
the width of the outer inviscid region (Tollmien layer). Thus our formulation differs
in technical respects from that of Smith & Burggraf (1985) who do not include this
diffusion layer, but implicitly assume that a uniform mean-flow distortion is somehow
produced throughout the Tollmien layer. In the case of temporal or spatio-temporal
evolution, the diffusion layer would seem to play a formally passive rôle† in the
sense that an explicit solution for this layer is not required in order to determine the
evolution of the wave parameters, although it needs to be verified that a solution
exists (which is certainly the case for a purely temporal evolution). Nevertheless the
inclusion of the diffusion layer does indirectly influence the evolution of the waves by
altering the outer boundary condition for the Stokes layer.

This is not the end of the story, however, since as observed by previous authors (e.g.
Smith & Burggraf 1985; Lam 1988) there is no guarantee that a Stokes-layer solution
will continue to exist for indefinitely large disturbances. Indeed, our calculations
confirm that unless the parameter γ0 ≡ α0/c0 goes to zero, the Stokes layer develops a
‘marginal-separation’ singularity at a certain finite value of wave amplitude (b0 < 1),
in which case the quasi-inviscid DABO description ceases to be strictly valid before
the asymptotic soliton form in attained. We note that the parameter values γ0 = 1,

† As shown in Appendix A, the purely spatial case is a different matter and the diffusion layer
plays a determining rôle, albeit for smaller disturbance amplitudes.
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b0 = 0.65 used in the experimental comparisons of Kachanov et al. (1993) are well
outside the range for which, in our choice of formulation, an attached Stokes-layer
solution could be found (see figure 4).† It is not clear, therefore, how a solution with
these parameters would develop from an initially linear HFLB TS wave (and in most
controlled experiments the initial disturbance is in the linear régime). Admittedly, there
seems no reason why Kachanov et al. (1993) could not have fitted their data using
smaller values of γ0, for which larger-amplitude solutions with an unseparated Stokes
layer are available. In a complete theoretical description, however, the parameters γ0

and b0 cannot be assigned arbitrarily, but should be obtained from a solution of the
evolution equations.

As a model problem, we have studied the temporal evolution of a spatially periodic
disturbance that starts life at large negative times as an infinitesimal TS mode. While
this condition might be difficult to realize experimentally, it represents a particularly
simple initial-value problem since the evolution is governed by a single first-order
ordinary differential equation (6.11), the right-hand side of which is determined by
the solution to the classical boundary-layer equations in the Stokes layer. It turns out
that the marginal separation singularity is encountered at a rather modest amplitude,
b0 ≈ 0.19. At this stage the wave profile has not attained a shape resembling the
‘spiky’ soliton form; indeed it is still roughly sinusoidal in appearance (see figure 3).
We conclude that an infinitesimal TS wave may not evolve temporally into a wave
with an approximate soliton form because of the failure of a solution to exist in the
Stokes layer.

More generally, our formulation allows us to consider the spatio-temporal evolution
of a localized wavepacket. In this case the slow evolution of the three wave parameters
(wavenumber, wave speed and amplitude) is governed by a nonlinear hyperbolic
system of equations, namely (3.6), (5.25) and (5.26), and the possibility of ‘shock’
formation represents another way in which the asymptotic description may break
down. Preliminary numerical solutions of these equations indicate that for sufficiently
short packets, a shock does indeed form on the trailing edge of the packet, whereas for
longer packets breakdown occurs through a Stokes-layer singularity. Such rear-facing
shocks were in fact predicted by Rothmayer & Smith (1987) on the basis of a model
equation; a connection was suggested with experiments of Amini & Lespinard (1982)
on ‘incipient spots’, although these were certainly three-dimensional.

Finally, in Appendix A we consider a time-periodic disturbance evolving in space, as
is presumably appropriate to vibrating-ribbon experiments such as those of Borodulin
& Kachanov (1988). In this case, the inclusion of the diffusion layer has more far-
reaching consequences; the mean-flow correction in this layer goes fully nonlinear
and then develops a classical Goldstein singularity while the wave amplitude (in the
Tollmien layer) is still small. This suggests that the DABO formulation may not apply
at all to the nonlinear régime.

It must be emphasized that our results assume that the solution starts out as a
linear TS wave (or wavepacket) in the HFLB régime. This implies that γ0 = 1 initially,
and in fact for all the solutions found to date, γ0 differs little from unity in the
subsequent evolution, with the result that the wave amplitude b0 cannot grow beyond
about 0.2 before some form of breakdown occurs. Nevertheless, the development of
DABO travelling-wave solutions with smaller values of γ0 (and consequently a larger

† We emphasize again that while the Stokes-layer solutions are required to be unidirectional in
the frame of reference moving at the wave speed, all the solutions presented here have regions of
‘reversed-flow’ in the wall frame.
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critical amplitude b0c) is not ruled out for other types of initial condition, such as
those appropriate to bypass transition. For example, numerical solutions of the full
nonlinear triple deck by Ryzhov & Savenkov (1989) and Ryzhov & Timofeev (1995)
suggest the emergence, possibly through a bypass mechanism, of wavepackets with
soliton-like structures (although quantitative agreement with DABO travelling-wave
solutions remains to be confirmed). In this context, we note an alternative proposal
by Li et al. (1998), that a TS wave which goes nonlinear in the lower-branch régime
proper may encounter a finite-time singularity (Smith 1988) leading to a new stage of
development governed by an ‘extended’ Benjamin–Ono equation. Further numerical
work would seem desirable to clarify the relationship between these, and possibly
other, scenarios.

The motivation for this work came from the PhD thesis of Dr S. T. Lam, who
kindly provided the basis of the code used to solve the periodic boundary-layer
problem of § 6.1. It has also benefitted from discussions with Professor S. N. Brown,
Professor S. I. Chernyshenko, Dr M. O. de Souza and Dr S. N. Timoshin, and from
the helpful comments of the referees, in particular Dr O. S. Ryzhov.

Appendix A. Pure spatial evolution: weakly nonlinear stage
As remarked in the text, the amplitude equation (4.48) is not valid for a purely

spatial evolution, with ∂/∂T = 0. To understand the modification required in this
case, let us consider the limit of weak dependence on T , and set

A11(T ,X) = Ã11(τ, X), τ = µT , µ� 1. (A 1)

We have then that ∫ T

−∞
|A11|2(T ′, X)dT ′ = µ−1

∫ τ

−∞
|Ã11|2(τ′, X)dτ′, (A 2)

implying that the disturbance amplitude should be scaled down by a factor µ1/2.
Further, it is apparent from (4.23) that the diffusion-layer thickness scales up by the
same factor. A new régime comes into play when µ = O(ε2/3), since then a y∂u2M/∂X-
term must be included in equation (4.23). We shall not pursue the details of this
transitional scaling, however, but proceed directly to the purely spatial case.

A.1. Stage I

For a weakly nonlinear disturbance whose amplitude is a function of X only, we
expect the appropriate expansions to be

p = ε4/3[p11(X)eiσ + c.c.] + ε2p2M + ε8/3[p22e
2iσ + c.c.] + ε10/3[p31e

iσ + · · ·] + · · · ,
(A 3)

A = ε4/3[A11(X)eiσ + c.c.] + ε2A2M + ε8/3[A22e
2iσ + c.c.] + ε10/3[A31e

iσ + · · ·] + · · · .
(A 4)

The results (4.4) are unaltered, however (and we are free to set A31, etc. to zero). The
Tollmien-layer velocity components expand as

û = ŷ + ε4/3[û11(X, ŷ)eiσ + c.c.] + ε2û2M + ε8/3[û22e
2iσ + c.c.]

+ε10/3[û31e
iσ + c.c.] + · · · , (A 5)
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v̂ = ε4/3[v̂11(X, ŷ)eiσ + c.c.] + ε8/3[v̂22e
2iσ + c.c.] + ε10/3[v̂31e

iσ + c.c.]

+ε4[v̂4M + · · ·] + · · · , (A 6)

where

σ = ε−2(αX − T ), (A 7)

and again the previous results (4.39)–(4.41) apply except that terms involving ∂/∂T
should be dropped, as should the term −iαA∗11A22 in (4.41). Likewise, in the Stokes
layer the appropriate expansions are

û = ε4/3[ū11(X, ȳ)eiσ + c.c.] + ε2ȳ + ε8/3[ū2M + · · ·] + · · · , (A 8)

v̂ = ε10/3[v̄11(X, ȳ)eiσ + c.c.] + · · · , (A 9)

with the same results as before for the leading-order streamwise and normal velocity,
namely (4.11), as well as (4.12) for ū2M . The significant new feature concerns the
diffusion layer, which is now described by the rescaling

ŷ = ε2/3η, (A 10)

and expansions

û = ε2/3η + ε4/3[u11(X, η)eiσ + c.c.] + ε2u2M + · · · , (A 11)

v̂ = ε2[v11(X, η)eiσ + c.c.] + · · ·+ ε14/3v4M + · · · . (A 12)

Again the results (4.20) apply, but now the mean-flow distortion is obtained from

∂u2M

∂X
+
∂v4M

∂η
= 0, η

∂u2M

∂X
+ v4M = −∂|A

2
11|

∂X
+
∂2u2M

∂η2
, (A 13)

with boundary conditions

u2M |y=0 = v4M |y=0 = 0, (A 14)

together with the requirement that u2M is bounded as η →∞, and the initial condition

u2M → 0 as X → −∞. (A 15)

It follows from (A 13)–(A 15) that

A2M ≡ lim
η→∞ u2M = k

∂

∂X

∫ ∞
0

s−1/3|A11|2(X − s) ds where k = − 1

2π

[(− 2
3
)!]2

31/6
. (A 16)

Matching between the Tollmien layer and diffusion layer again imposes the re-
quirements (4.43), which here give (4.44)–(4.46) together with the amplitude-evolution
equation

∂A11

∂X
= γ(1− i)A11 − i

2
A11A2M, γ =

1

2
√

2
. (A 17)

As before, the nonlinear term affects only the phase, while the amplitude continues
to grow exponentially as for a linear mode. Specifically,

|A11| = a0e
γX, argA11 = φ0 − γX + Ce2γX, where C =

(− 2
3
)!a2

0

62/3
, (A 18)

and a0 and φ0 are arbitrary. However, the subsequent phase of evolution differs from
the (spatio-)temporal case since the mean flow in the diffusion layer goes nonlinear
when u2M rises to order ε−4/3. We anticipate, in view of (A 13), that this will happen
when a0e

γX , and hence A11, is of order ε−2/3.
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A.2. Stage II

The new régime, which comes into play at order-one values of

X̄ ≡ X − 2

3γ
ln ε−1 +

ln a0

γ
, (A 19)

may be expected, in view of (A 18), to take the WKBJ form

p = [ε2/3p̄11(X̄) + ε4/3p̄21(X̄) + ε2p̄31(X̄) + ε8/3p̄41(X̄) + · · ·]E
+[ε4/3p22(X̄) + ε2p32(X̄) · · ·]E2 + c.c.+ ε8/3p̄4M(X̄) + · · · , (A 20)

A = ε2/3Ā11(X̄)E + [ε4/3Ā22(X̄) + ε2Ā32(X̄) + · · ·]E2 + c.c.

+ε2/3Ā1M(X̄) + ε4/3Ā2M(X̄) + ε2Ā3M(X̄) + · · · , (A 21)

where

E = exp [i(x− t) + iε−4/3Θ1(X̄) + iε−2/3Θ2(X̄) + 2
3
i ln ε+ i ln a0]. (A 22)

As before, the pressure–displacement interaction law yields

p̄11 = Ā11, p̄21 = Θ ′1Ā11, p̄31 = Θ ′2Ā11, p̄41 = −i
∂Ā11

∂X̄
, (A 23)

p̄22 = 2Ā22, p̄32 = 2Ā32 + 2Θ ′1Ā22, (A 24)

p̄4M =
1

π

∂

∂X̄
−
∫ ∞
−∞

Ā1M

X̄ − X̄ ′ dX̄ ′, and so on. (A 25)

In the Tollmien layer

û = ŷ + A, (A 26)

v̂ = [ε2/3v̂11(X̄, ŷ) + · · ·]E + [ε4/3v̂22 + · · ·]E2 + c.c.+ ε8/3v̂4M + · · · , (A 27)

with

v̂11 = −iĀ11ŷ, v̂21 = −i[p̄21 + Ā11Ā1M]− iΘ ′1[p̄11 + ŷĀ11], (A 28)

v̂31 = −i[p̄31 + Ā11Ā2M + Ā∗11Ā22]− iΘ ′1[p̄21 + Ā11Ā1M]− iΘ ′2[p̄11 + ŷĀ11], (A 29)

v̂41 = −i[p̄41 + Ā11Ā3M + Ā∗11Ā32]− iΘ ′1[p̄31 + Ā11Ā2M + Ā∗11Ā22]

−iΘ ′2[p̄21 + Ā11Ā1M]− ∂

∂X̄
[p11 + ŷA11], (A 30)

v̂22 = −2i[p̄22 + (ŷ − 1)Ā22 + 1
2
Ā2

11] (A 31)

v̂32 = −2i[p̄32 + (ŷ − 1)Ā32]− 2iΘ ′1[p̄22 + ŷĀ22 + 1
2
Ā2

11], (A 32)

and so on. The Stokes-layer velocity components expand as

û = ε2/3[ū11(X̄, ȳ)E + c.c.] + ε4/3[ū22E
2 + ū21E + c.c.+ ū2M] + · · · , (A 33)

v̂ = ε8/3[v̄11(X̄, ȳ)E + c.c.] + ε10/3[v̄22E
2 + v̄21E + c.c.] + · · · , (A 34)
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with solutions (4.11)–(4.12) as before. The main difference comes in the diffusion
layer, ŷ = ε2/3η, where the mean-flow correction is now comparable with the basic
flow. The velocity expansions in this layer are

û = ε2/3[u11(X̄, η)E + c.c.+ u1M] + ε4/3[u22E
2 + u21E + c.c.+ u2M] + · · · ,

(A 35)

v̂ = ε4/3[v11(X̄, η)E + c.c.] + ε6/3[v22E
2 + v21E + c.c.] + · · · ; (A 36)

it is found that

u11 = Ā11, v11 = −iĀ11η, u22 = Ā22, v22 = −2iĀ22η, (A 37)

u21 = Ā11F1M, v21 = −iΘ ′1Ā11η − iĀ11

∫ η

0

F1Mdη′, (A 38)

u31 = Ā11

[
F2M + u1MF1M − ∂u1M

∂η

∫ η

0

F1Mdη′
]
, (A 39)

v31 = e3πi/4Ā11 − iΘ ′2Ā11η − iĀ11

∫ η

0

F2Mdη′ − iΘ ′1Ā11

∫ η

0

F1Mdη′

−iĀ11

∫ η

0

[
u1MF1M − ∂u1M

∂η′

∫ η′

0

F1Mdη′′
]
dη′, (A 40)

where

F1M = u1M − Ā1M − η∂u1M

∂η
, F2M = u2M − Ā2M − η∂u2M

∂η
. (A 41)

The leading-order mean flow is governed by the equations

∂u1M

∂X̄
+
∂v4M

∂η
= 0, u1M

∂u1M

∂X̄
+ v4M

∂u1M

∂η
= −∂|Ā11|2

∂X̄
+
∂2u1M

∂η2
, (A 42)

together with the boundary conditions

u1M = v4M = 0 on η = 0,
∂u1M

∂η
→ 1 as η →∞, (A 43)

and upstream condition

u1M ∼ η as X̄ → −∞. (A 44)

Matching between the Tollmien layer and diffusion layer, and making use of
(A 23)–(A 24), we obtain

Θ ′1 = − 1
2
Ā1M, Θ ′2 = − 1

2
Ā2M + 1

4
|Ā2

11|+ 1
8
Ā2

1M +

∫ ∞
0

(u1M − Ā1M)dη, (A 45)

and

∂Ā11

∂X̄
= γ(1− i)Ā11 + iĀ11B̄, where γ =

1

2
√

2
(A 46)

and B̄ is a real quantity. It follows that

|Ā11|2 = eX̄/
√

2. (A 47)

In order to determine the evolution of the leading-order phase Θ1 from (A 45), it is
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Figure 8. The square of the mean wall shear, [u1Mη(X̄, 0)]2. A Goldstein-type singularity is

apparently forming as the wall shear falls to zero at a finite value of X̄.

necessary to obtain

Ā1M = lim
η→∞(u1M − η) (A 48)

from a numerical solution of the mean-flow problem (A 42)–(A 44) and (A 47).

This mean-flow solution is shown in figure 8. As might be anticipated for a
boundary-layer flow in an adverse pressure gradient, the solution is seen to terminate
in a Goldstein-type singularity at a finite distance downstream, X̄ = X̄s say, with
wall shear ∂u1M/∂η(η = 0) going to zero like (X̄s − X̄)1/2, and displacement gradient
∂Ā1M/∂X̄ going to infinity like (X̄s − X̄)−1/2.

As the singularity is approached, the mean pressure (A 25) is growing in importance.
It might be supposed that at some point this mean pressure makes itself felt in equation
(A 42), thus giving an interactive boundary-layer problem for the subsequent evolution
of the mean flow over a shortened lengthscale. We shall not pursue this new problem,
however, other than to note two possible scenarios.

The first scenario is that it is possible to solve the rescaled problem and any
subsequent rescaled problems, and to obtain a downstream solution well past the
position of the singularity without altering the solution already found upstream of
the singularity.

The second scenario, and possibly the more likely, is analogous to steady classical-
boundary-layer flow past a bluff body, where it is known that the Goldstein singularity
is not ‘removable’ (Stewartson 1970). This is the case in which one of the rescaled
problems downstream of the singularity does not have a solution, and the entire
formulation is invalid – with the conclusion that a correct description (if, indeed, a
solution exists) requires an order-one change to the upstream solution.
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Appendix B. Weakly nonlinear evolution of a dispersing wavepacket
As illustrated in § 4, it is often convenient to study the weakly nonlinear evolution

of a wavepacket using a frame of reference moving at the [linear] group velocity of
the carrier wave. In the fully nonlinear régime studied in § 5, the carrier waves are
nonlinear and the ‘group velocities’ are amplitude-dependent (and hence non-unique).
As a result it is not possible to simplify the analysis by moving into the frame of the
group velocity. However for smaller-amplitude waves the group velocity of the carrier
wave is constant (to leading order). By transforming into a frame moving with this
group velocity it is then possible to consider the evolution of a wavepacket which is
modulated over a shorter spatial scale than (3.1a), and for which linear dispersion
plays a significant role over the slow evolution timescale (3.1b). Here we outline a
derivation of the amplitude equation for this problem.

In order to identify the appropriate scaling, we rewrite (4.50) in a frame of reference
moving at the group velocity by means of the substitution

A11(T ,X) = ∆Ã11(T , ξ̃), ξ̃ = µ−1(X − 2T ), (B 1)

which gives

∂Ã11

∂T
= e−iπ/4Ã11 +

iµ∆2Ã11

2
√

2

∫ ∞
0

|Ã11|2(T − 1
2
µξ̃′, ξ̃ + ξ̃′) dξ̃′. (B 2)

It follows that for a ‘short’ wavepacket, with µ � 1, it is appropriate to scale
the amplitude with ∆ = µ−1/2 to preserve the nonlinear term. As shown by Smith
(1986a), a new régime comes into play when µ = O(ε), and dispersive effects enter
the reckoning. Accordingly we introduce the variables

σ = ε−2(X − T ), ξ = ε−1(X − 2T ) (B 3)

and expand

p = ε1/2[p11(T , ξ)eiσ + c.c.] + ε[p22e
2iσ + c.c.+ p2M] + ε3/2[p31e

iσ + p33e
3iσ + c.c.]

+ε2[p42e
2iσ + p44e

4iσ + c.c.+ p4M] + ε5/2[p51e
iσ + · · ·] + · · · , (B 4)

A = ε1/2[A11(T , ξ)eiσ + c.c.] + ε[A22e
2iσ + c.c.+ A2M]

+ε3/2[A31e
iσ + A33e

3iσ + c.c.] + ε2[A42e
2iσ + A44e

4iσ + c.c.+ A4M]

+ε5/2[A51e
iσ + · · ·] + · · · ; (B 5)

without loss of generality we may take

A31 = A51 = . . . = 0. (B 6)

For simplicity, we restrict attention to localized wavepackets, for which

A11 → 0 as ξ → ±∞ (B 7)

(as opposed to ξ-periodic wavetrains, say, which can in fact be handled by a slight
modification of the following analysis).

The pressure–displacement interaction law gives

p11 = A11, p22 = 2A22, p2M = 0, p31 = −i
∂A11

∂ξ
, p33 = 3A33, (B 8)

p42 = 2A42 − i
∂A22

∂ξ
, p4M =

1

π

∂

∂ξ
−
∫ ∞
−∞

A2M

ξ − ξ′ dξ′, p51 = 0. (B 9)
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In the Tollmien layer (where ŷ is of order one) we may take

û = ŷ + A, (B 10)

and

v̂ = ε1/2[v̂11(T , ξ, ŷ)eiσ + c.c.] + ε[v̂22e
2iσ + c.c.] + ε3/2[v̂31e

iσ + v̂33e
3iσ + c.c.]

+ε2[v̂42e
2iσ + v̂44e

4iσ + c.c.+ v̂4M] + ε5/2[v̂51e
iσ + · · ·] + ε3[v̂6M + · · ·] + · · · , (B 11)

where

v̂11 = −iA11ŷ, v̂22 = −2iA22(ŷ + 1)− iA2
11, v̂31 = −∂A11

∂ξ
ŷ − iG1, (B 12)

v̂33 = −3iA33(ŷ + 2)− 3iA11A22, (B 13)

v̂42 = −2iA42(ŷ + 1)− ∂A22

∂ξ
(ŷ + 2)− 2iα[A22A2M + A∗11A33]− A11

∂A11

∂ξ
, (B 14)

v̂4M = − ∂

∂ξ
[A2M(ŷ − 2) + |A11|2], v̂51 = i

∂2A11

∂ξ2
− ∂A11

∂T
− ∂G1

∂ξ
− iG2, (B 15)

v̂6M = −1

π

∂2

∂ξ2
−
∫ ∞
−∞

A2M

ξ − ξ′ dξ′ − ∂A2M

∂T
− ∂

∂ξ
[A4M(ŷ − 2) + 1

2
A2

2M + |A22|2], (B 16)

and we have defined

G1 = A11A2M + A∗11A22, G2 = A11A4M + A∗11A42 + A∗22A33. (B 17)

We omit the analysis of the Stokes layer and diffusion layer (which in this case has ŷ
of order ε3/2), and merely note that it imposes the requirements

v̂22 → 0, v̂33 → 0 and v̂42 → 0 as ŷ → 0, (B 18)

from which we obtain

A22 = −1

2
A2

11, A33 = 1
4
A3

11, A42 = − i

4

∂(A2
11)

∂ξ
+ 1

2
A11G1. (B 19)

It is further required that

v̂4M → 0, v̂6M → 0 as ŷ → 0, (B 20)

and we expect that all perturbation quantites go to zero ahead of the wavepacket, i.e.
as ξ → +∞, in which case

A2M =
1

2
|A11|2, (B 21)

A4M = 3
16
|A11|4 +

1

2π

∂

∂ξ
−
∫ ∞
−∞

A2M

ξ − ξ′ dξ′ − 1

2

∫ ∞
ξ

∂A2M

∂T
dξ′. (B 22)

Finally, we have that

v̂31 → 0, v51 → e3πi/4A11 as ŷ → 0. (B 23)

The first of (B 23) is automatically satisfied since G1 = 0; the second gives the
amplitude-evolution equation

∂A11

∂T
− i

∂2A11

∂ξ2
= e−iπ/4A11 − 1

2
|A11|2 ∂A11

∂ξ
+ iA11B̃, (B 24)
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where

B̃ = − 1
16
|A11|4 − 1

4π

∂

∂ξ
−
∫ ∞
−∞
|A11|2
ξ − ξ′ dξ′ +

1

4

∫ ∞
ξ

∂|A2
11|

∂T
dξ′. (B 25)

Since B̃ is a real quantity, it follows from (B 24) that

∂

∂T
(|A11|2) =

∂

∂ξ

(
iA∗11

∂A11

∂ξ
− iA11

∂A∗11

∂ξ
− 1

4
|A11|4

)
+
√

2|A11|2, (B 26)

and hence ∫ ∞
−∞
|A11|2 dξ = H0e

√
2T , (B 27)

where H0 is a constant; the evolution of this ‘energy’ integral is thus unaffected
by nonlinearity (as in Smith 1986a). On making use of (B 26), we may rewrite the
amplitude equation (B 24)–(B 25) in the form

∂A11

∂T
− i

∂2A11

∂ξ2
= e−iπ/4A11 − 1

4
A11

∂|A2
11|

∂ξ

+iA11

[
1

2
√

2

∫ ∞
ξ

|A11|2 dξ′ − 1

4π

∂

∂ξ
−
∫ ∞
−∞
|A11|2
ξ − ξ′ dξ′

]
. (B 28)

We shall not study further properties of the amplitude equation here, and merely
note that it differs from that of Smith (1986a) for the same reason that (4.47)–(4.48)
differs from that of Smith & Burggraf (1985), namely the absence of a diffusion layer
in the analysis of Smith (1986a). Instead, he takes A2M = 3|A11|2, with the consequence
that G1 ≡ 5

2
|A11|2A11, and v31 cannot satisfy the boundary condition (B 23). It is thus

necessary for this amplitude expansion to proceed in powers of ε rather than ε1/2

as here, and the outcome is an amplitude equation of Ginzburg–Landau type. In
our analysis, the (fortuitous) vanishing of G1 gives rise to an amplitude equation
involving higher-order nonlinearities (as in Johnson 1977; Dysthe 1979 for example).
For a more general interactive boundary-layer problem, however, there is no reason
to expect that G1 will vanish. In a wall jet, for example, for which the pressure–
displacement interaction law (2.19) is replaced by p̃ = −Ãx̃x̃ (Smith & Duck 1977;
Ryzhov 1982), we find that G1 = 1

6
|A11|2A11. It follows that a weakly nonlinear

wavepacket of the kind under consideration here is described by an expansion of the
form

A = εA11(T , ξ)eiσ + c.c.+ O(ε2), (B 29)

where

σ = ε−2(X − T ), ξ = ε−1(X − 3T ), (B 30)

and A11 satisfies the Ginzburg–Landau equation

∂A11

∂T
− 3i

∂2A11

∂ξ2
= e−iπ/4A11 − 1

6
i|A11|2A11. (B 31)

Solutions of this equation are discussed by Smith (1986a, b) and Smith, Stewart &
Bowles (1994).
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